

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN



PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald

Summer term 2016 June 20, 2016

## FUNCTIONAL ANALYSIS EXCERCISE SHEET 10

## REMAINING SOLUTION

**Problem 1** (FINITE RANK OPERATORS ARE COMPACT). Let X, Y be normed spaces. A linear operator  $T: X \to Y$  is called *finite-rank* if  $\operatorname{rank}(T) \coloneqq \dim R(T) < \infty$ . Prove that a bounded linear operator is compact if it is finite-rank. [5 Points]

**Proof.** Let  $A \subseteq X$  be bounded. Then there exists R > 0 s.t. ||x|| < R for all  $x \in A$ . Since T is bounded we have for  $x \in A$  that  $||Tx|| \le ||T|| ||x|| < ||T|| R$ . Thus

 $TA = \{Tx \mid x \in A\} \subseteq B_{\parallel T \parallel R}(0) \subset \overline{B_{\parallel T \parallel R}(0)}$ 

is bounded and hence  $\overline{TA}$  as well, as  $\overline{TA}$  is the smallest closed set containing TA. Clearly  $\overline{TA}$  is closed (observe that A and TA are sets and not spaces in general).

<u>Claim</u>: A subset  $S \subseteq V$  of a finite dimensional normed K-vectorspace V is compact *iff* it is closed and bounded.

*Proof*: From linear algebra we know that V is isometrically isomorphic to  $\mathbb{K}^d$ , where  $d = \dim V < \infty$ . Let  $\varphi : V \to \mathbb{K}^d$  be such an isometric isomorphism. Since  $\varphi$  is in particular an homeomorphism,  $\varphi(S) \subseteq \mathbb{K}^d$  is { closed, bounded, compact } iff S is. In  $\mathbb{K}^d$  we know by Heine-Borel, that  $\varphi(S)$  is compact iff it is closed and bounded.

With  $S := \overline{TA} \subseteq V := R(T)$  follows by the claim that T is compact.

Alternative proof: Recall that an operator  $T: X \to Y$  is compact *iff* for every bounded sequence  $\{x_n\}_n \subseteq X$  the sequence  $\{Tx_n\}_n \subseteq Y$  has a convergent subsequence.

Let  $N \coloneqq \operatorname{rank}(T) < \infty$  and  $\{e_j\}_{j=1}^N$  be a basis of  $V \coloneqq R(T)$ . Consider the 1-norm on Vw.r.t.  $\{e_j\}_{j=1}^N$ , i.e.  $\|y\|_1 \coloneqq \sum_{j=1}^N |\alpha_j|$  for all  $y = \sum_{j=1}^N \alpha_j e_j$ , where  $\{\alpha_j\}_{j=1}^N = \{\alpha_j(y)\}_{j=1}^N \subseteq \mathbb{C}^N$ . Since all norms in finite-dimensional vector spaces are equivalent, there exist c, C > 0 such that  $c \|y\|_Y \le \|y\|_1 \le C \|y\|_Y$  for all  $y \in V \subseteq Y$ .

Let  $(x_n)_n \subseteq X$  be a bounded sequence in X, wlog  $||x_n||_X \leq 1$  for all  $n \in \mathbb{N}$ . Let  $\{\alpha_j^{(n)}\}_{j=1}^N$  denote the coordinates of  $y_n \coloneqq Tx_n \in V$  w.r.t.  $\{e_j\}_{j=1}^N$ . Then we have for all  $j = 1, \ldots, N$  that

$$|\alpha_j^{(n)}| \le \sum_{j=1}^N |\alpha_j^{(n)}| = \|Tx_n\|_1 \le C \|Tx_n\|_Y \le \|T\|_{B(X,Y)} \|x_n\|_X \le \|T\|_{B(X,Y)}.$$

Hence, for each j,  $(\alpha_j^{(n)})_n$  is a bounded sequence in  $\mathbb{C}$  and therefore admits a convergent subsequence. Thus we can iteratively extract convergent subsequences

$$\alpha_1^{(\tilde{n}_k)} \to \alpha_1, \quad \alpha_2^{(\tilde{n}_{k_l})} \to \alpha_2, \quad \dots$$

such that after N steps, each component converges to some  $\alpha_j \in \mathbb{C}$ . Denoting this subsequence by  $(\alpha^{(n_k)})_k$  and  $y := \sum_j \alpha_j e_j$ , we find that

$$c ||Tx_{n_k} - y||_Y \le ||Tx_{n_k} - y||_1 = \sum_{n=1}^N |\alpha_j^{(n_k)} - \alpha_j| \to 0.$$

Thus for every bounded sequence  $\{x_n\}_n \subseteq X$  the sequence  $\{Tx_n\}_n \subseteq Y$  has a convergent subsequence. Hence T is compact.