

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 June 20, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 10

Problem 1 (FINITE RANK OPERATORS ARE COMPACT). Let X, Y be normed spaces. A linear operator $T: X \to Y$ is called *finite-rank* if $\operatorname{rank}(T) := \dim R(T) < \infty$. Prove that a bounded linear operator is compact if it is finite-rank. [5 Points]

Proof. Let $A \subseteq X$ be bounded. Then there exists R > 0 s.t. ||x|| < R for all $x \in A$. Since T is bounded we have for $x \in A$ that $||Tx|| \le ||T|| ||x|| < ||T|| R$. Thus

$$TA = \{Tx \mid x \in A\} \subseteq B_{\|T\|R}(0) \subset \overline{B_{\|T\|R}(0)}$$

is bounded and hence \overline{TA} as well, as \overline{TA} is the smallest closed set containing TA. Clearly \overline{TA} is closed (observe that A and TA are sets and not spaces in general).

<u>Claim</u>: A subset $S \subseteq V$ of a finite dimensional normed \mathbb{K} -vector space V is compact iff it is closed and bounded.

Proof: From linear algebra we know that V is isometrically isomorphic to \mathbb{K}^d , where $d = \dim V < \infty$. Let $\varphi : V \to \mathbb{K}^d$ be such an isometric isomorphism. Since φ is in particular an homeomorphism, $\varphi(S) \subseteq \mathbb{K}^d$ is { closed, bounded, compact } iff S is. In \mathbb{K}^d we know by Heine-Borel, that $\varphi(S)$ is compact iff it is closed and bounded.

With
$$S := \overline{TA} \subseteq V := R(T)$$
 follows by the claim that T is compact. \square

Alternative proof: Recall that an operator $T: X \to Y$ is compact *iff* for every bounded sequence $\{x_n\}_n \subseteq X$ the sequence $\{Tx_n\}_n \subseteq Y$ has a convergent subsequence.

Let $N := \operatorname{rank}(T) < \infty$ and $\{e_j\}_{j=1}^N$ be a basis of V := R(T). Consider the 1-norm on V w.r.t. $\{e_j\}_{j=1}^N$, i.e. $\|y\|_1 := \sum_{j=1}^N |\alpha_j|$ for all $y = \sum_{j=1}^N \alpha_j e_j$, where $\{\alpha_j\}_{j=1}^N = \{\alpha_j(y)\}_{j=1}^N \subseteq \mathbb{C}^N$. Since all norms in finite-dimensional vector spaces are equivalent, there exist c, C > 0 such that $c \|y\|_Y \le \|y\|_1 \le C \|y\|_Y$ for all $y \in V \subseteq Y$.

Let $(x_n)_n \subseteq X$ be a bounded sequence in X, wlog $||x_n||_X \le 1$ for all $n \in \mathbb{N}$. Let $\{\alpha_j^{(n)}\}_{j=1}^N$ denote the coordinates of $y_n := Tx_n \in V$ w.r.t. $\{e_j\}_{j=1}^N$. Then we have for all $j = 1, \ldots, N$ that

$$|\alpha_j^{(n)}| \le \sum_{j=1}^N |\alpha_j^{(n)}| = ||Tx_n||_1 \le C ||Tx_n||_Y \le ||T||_{B(X,Y)} ||x_n||_X \le ||T||_{B(X,Y)}.$$

Hence, for each j, $(\alpha_j^{(n)})_n$ is a bounded sequence in \mathbb{C} and therefore admits a convergent subsequence. Thus we can iteratively extract convergent subsequences

$$\alpha_1^{(\tilde{n}_k)} \to \alpha_1, \quad \alpha_2^{(\tilde{n}_{k_l})} \to \alpha_2, \quad \dots$$

such that after N steps, each component converges to some $\alpha_j \in \mathbb{C}$. Denoting this subsequence by $(\alpha^{(n_k)})_k$ and $y := \sum_j \alpha_j e_j$, we find that

$$c \|Tx_{n_k} - y\|_Y \le \|Tx_{n_k} - y\|_1 = \sum_{n=1}^N |\alpha_j^{(n_k)} - \alpha_j| \to 0.$$

Thus for every bounded sequence $\{x_n\}_n \subseteq X$ the sequence $\{Tx_n\}_n \subseteq Y$ has a convergent subsequence. Hence T is compact.

Problem 2 (RELATIVE COMPACTNESS). Consider the following subsets of C([0,1]):

- a) $E := \{ f \in C^1([0,1]) \mid f(0) = 0 \land \forall x \in [0,1] : |f'(x)| \le 1 \}.$
- b) $E := \{x \mapsto x^n \mid n \in \mathbb{N}\}.$
- c) $E := \{x \mapsto \sin(nx) \mid n \in \mathbb{N}\}.$
- d) $E := \{x \mapsto \sin(\alpha + x) \mid \alpha \in \mathbb{R}\}.$
- e) $E := \{ f \in C^2([0,1]) \mid f(0) = 0 \land \forall x \in [0,1] : |f''(x)| \le 1 \}.$

Prove whether or not these sets are relatively compact¹ in $(C([0,1]), \|\cdot\|_{\infty})$. [3+3+3+3+3 Points]

Problem 3 (Compact operator). Let $k \in C([0,1]^2)$ and for $f \in C([0,1])$ and $x \in [0,1]$ define

$$(Tf)(x) := \int_0^x k(x,y) f(y) dy.$$
 (1)

Prove the following:

- a) This defines a bounded linear map $T: (C([0,1]), \|\cdot\|_{\infty}) \to (C([0,1]), \|\cdot\|_{\infty}).$
- b) T is compact.

[5+5 Points]

Problem 4 (EXTENSION). Let \mathcal{H} be a separable Hilbert space and let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal basis of \mathcal{H} .

a) Consider A, B > 0, let $a = (a_n)_{n \in \mathbb{N}}, b = (b_n)_{n \in \mathbb{N}}$ s.t. $a_n, b_n > 0$ for all $n \in \mathbb{N}$, and let $T : \operatorname{span} \{e_n\}_{n \in \mathbb{N}} \to \mathcal{H}$ be a linear operator such that

$$\sum_{n=1}^{\infty} b_n |\langle e_m, Te_n \rangle| \le Aa_m \ \forall m \in \mathbb{N} \quad \text{and} \quad \sum_{m=1}^{\infty} a_m |\langle e_m, Te_n \rangle| \le Bb_n \ \forall n \in \mathbb{N}. \quad (2)$$

Prove that T extends uniquely to a bounded linear operator on \mathcal{H} with $||T|| \leq \sqrt{AB}$.

b) Let $T : \text{span}\{e_n\}_{n \in \mathbb{N}} \to \mathcal{H}$ be a linear operator such that $\langle e_m, Te_n \rangle = \frac{1}{n+m-1}$ for all $n, m \in \mathbb{N}$.

Prove that T extends uniquely to a bounded linear operator on \mathcal{H} with $||T|| \leq \pi$.

 $^{^1}K\subseteq X$ is called relatively compact iff \overline{K} is compact.

- c) Let $T : \text{span } \{e_n\}_{n \in \mathbb{N}} \to \mathcal{H}$ be a linear operator such that $\langle e_m, Te_n \rangle = \frac{1}{2^{n+m-1}}$ for all $n, m \in \mathbb{N}$.
 - Prove that T extends uniquely to a bounded linear operator on $\mathcal H$ and compute $\|T\|$.

[5+2+3 Points]

Deadline: June 27, 2016 14:00, for details see http://www.math.lmu.de/~gottwald/16FA/.