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REMAINING SOLUTION

Problem 1 (EQUALITY IN MINKOWSKI'S INEQUALITY).

a) Let 1 <p < ooand 0# x,y € (*. Prove that ||z +yl|, = 2|, + [yl iff v = ax for
some « > 0.

b) Let p € {1,00}. Prove that there exists 0 # z,y € % s.t. |lz +yl, = |lz[|, + [yl
and y # ax for all a € R.

c) Let 1 <p<ooandgq= p%l. Prove that for every x € (P

Z xnyn .

n=1

(1)

[5+2+3 Points]

]|, = sup
llyllg=1

Proof. a) Recall that Minkowski’s inequality follows from Holder’s inequality for all
x,y € P s.t. x4y # 0 through

|z + yHi = Z |20 + yul” < Z || + Yl + Z (Y| + Yl
n=1 n=1 n=1

oo 1/p/ o 1-1/p / 1/r/ o 1-1/p
< (Zw) <z|xn+yn|p) +(z|yn\p> (zyxn+yn|p)
n=1 n=1 n=1 n=1

—1
= (lzll, + lyll) Iz + gl (2)

where we used the triangle inequality for the first and Hélder’s inequality for the
second estimate. Since, by the convexity of ¢ — t¥ for t > 0, we have that
o+ Yn|” <|a:n| + |yn|)’” ol £ Lyl

< Y
2 2 - 2

and hence that

e+ ylly = > lon + yal” < 277 (Z [l + ) |an”> = 27|l I} + llyll) < oo,

n=1 n=1 n=1

we can devide in (2) by ||z + y||§_1 < 00 to get Minkowski’s inequality.
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“=": Assume that ||z +y|, = [z, + |ly|l, for some 0 # z,y € (7. Then the

inequalities in (2)) (divided by ||z + yHg_l) must be equalities. In particular we must
have equality in both Hoélder inequalities, i.e.

1P/ o
Z|mn|lazn+yn\p t= (Z\xn\p> (Z]%Jr?/n\p)
n=1
1P/ oo 1-1/p
S il 1 = (Zw) (z|xn+yn|p) |
n=1

Equality in Holder holds true iff there exists A\[, A5 > 0 s.t. for all n € N:

1-1/p

[T+ ynl” = Mzal? and |z, +yo|” = Alyal”,
which is equivalent to
[Tn 4 Yol = Milxa|  and |z, + yo| = Aofynl (3)

foralln € N. If A; = 0 or Ay = 0 then x = —y and from the assumption ||z + y[, =
||l + llyl|,, follows the contradiction x =y = 0. Thus Ay, A2 > 0 and hence

[yn| = =l n] (4)

for all n € N. This proves in particular that x,, = 0 iff y, = 0. Hence we can assume
that |z,|, |y, > 0.

It remains to prove that x,, and y, have the same phase (or sign if K = R) for all
n € N. Again from and the assumption follows

o e
1|
lell, + il = e+ 90, = (S Jow +9al? | = b
Yo ol

n=1

and hence [ly[|, = (A — 1) ||z, and [[z]|, = (A2 = ) [lyll, = (M = D)(A2 = 1) [|]l,,,
which implies that
Ao = A+ N, (5)

Denote x, = |z,|e!" and y, = |y,|e**" for some a,,, 3, € [0,27). From (3) and
follows that
ian )‘1 21 iBn

AM|Tn| = [0 + yn| = 20| e

Y

and hence from that A\{ + Xo = Ay = |>\1 + \geilan—5n)
ap, = By, for all n € N.

With «a = :\\—; we finally get from for all n € N that

, which implies that

yn — |yn|€iﬁn — alxnleiﬁn — al.nei(ﬁn_an) — O{ﬂjn, (6)

and hence that y = ax.

“<": Assume that z = ay for some a > 0. Then [z +yl[, = (1 + o) |z[[, =
], + [1yll,-



b) e p = 1: Consider z := (1,0,0,...) and y = (0,1,0,...) then [[z|, = [jy[|, =
|z + y|l, = 2 and hence ||z + y||; = [|z||, + |ly|l;, but  # ay for all o > 0.
e p = oo: Consider z == (1,0,0,...) and y == (1,1,0,0,...) then ||z|| = ||yl =
|z +yl|l., = 2 and hence ||z + y|; = ||z|/, + [lyl/;, but  # ay for all a > 0.

c) e 1 <p < oo: From the lecture we know that /7 = (¢9)" i.e. that T': ¥ — (¢7) with
T — ¢y, where ¢, (y) = > 07| x,y, for all y € €9, is an isometric isomorphism. Let
x € (. Then we have

12l = I ¢all@y = sup |¢=(y)| = sup

uynq—l lylig=1

e p=1: Let 0 # x € ('. From Holder’s inequality we get, for y € (> s.t. ||y|| =
that

< =l vl = Nlzlly

and hence that sup yew ]Zn 1 ZnYn| < ||zl

llyllg=1
For the reverse inequality consider the sequence 3§ = (¥, )nen with g, = |§—z| if
z, # 0 and g, = 0 if z,, = 0. Then |7/, = sup,en |¥n| = 1, since = # 0, and we
have
o @]
Sufq) Zznyn = Z |xn| = ||1'||1

Therefore ||z||, = SUp yees 1> o Tl

llyll,=1

Problem 2 (INNER PRODUCT VS. PARALLELOGRAM IDENTITY).

a) Let (X, ||||) be a normed space over K. Prove, for K = R and for K = C, that the
norm in X is induced by an inner product iff it satisfies the parallelogram identity

vo,y € X ¢ fle+ oyl + llz - yl® = 21l2]” + 2 ly)* (7)

b) Let p € [1,00]. Prove that ¢ is a Hilbert space iff p = 2.
[7+3 Points]

Proof.

a) “==": Assume that X is an inner product space with inner product (-,-). Let [|-||
denote the induced norm, i.e. ||z|| := y/(z, x) for all z € X. Then for x,y € X:

Iz +ylI” = llll* + 2R (z,9) + lly]*
lz = ylI” = [lz]l” — 2R (z, ) + lyII".

Summing both equations gives . This was also proven in tutorial 9.

“<=": Assume that the norm ||-|| of X satisfies (7).
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e For the case K = R define (-,-) : X x X = R, by

1
(.0 =1 (le+yl* = o —yl?), VoyeX. (5)

Hint: This is called a real polarisation identity.

We have to prove, that (-,-) defines a real inner product and that ||z| = \/(z,z)
for all x € X. The latter, symmetry and definiteness are obvious.

To prove linearity of (-,-) observe first, that we have for all z,y, z € X, by (7), that

2ty Bllztyt 2= llr+y— 2
2 2 2 2
N+ )+ )P+ @ +2) -yl = llr— (=2 = Iz + (y — 2)]
2 2 2 2
D5 (Ja+ 207+ Iyl1%) = 2 (> + Iy — 2II%) .

and similarly, by exchanging x with y, that
2 2 2 2
A +y,z) =2(ly + 21"+ l27) = 2 (IyllI” + llz — 2[) -
Summing both equations leads to

8(z+y,2) =2 (le+z” — e —=21”) +2(ly + 2" = lly — =II")
=8(z,2) +8(y, 2) .
Hence (x + vy, 2) = (z,2) + (y, 2) for all z,y € X.
By induction follows (nz, z) = n (z, z) for all n € N. Directly from the definition we
get (0z,y) =0 = 0(z,y) and (—x,y) = — (z,y) for all z,y € X. Hence (nz,y) =
n(z,y) for all n € Z and all z,y € X.

m

For o = 2 € Q and z,y € X we get n{az,y) = (mr,y) = m(r,y) and hence
{ar,y) = a(z,y).

For the last step observe, that = — (z,y) is continuous for all (fixed) y € X, since
the norm ist continuous. Let o« € R and o, € Q s.t. ap, — «a for k — o0o. Then

(o, y) = (limy_oo gz, y) = limg_o0 (i, y) = limg 00 g, (2, y) = a (2, y).
In total we have for o € R and z,y,z € X that (ax + vy, 2) = a(x, z) + (y,2). This
proves the linearity of (-, -).

e For the case K = C define (-,-) : X x X — C, by

1 2 2 i 2 2
(w.y) =5 (le+yl” = lle = yll") = 7 (lz +iyll” = llz —iyl") , Yo,y e X (9)
Hint: This is called a complex polarisation identity.
We have to prove, that (-, -) defines a complex inner product and that ||z|| = \/(z, z)
for all x € X. The proof is analog to the real case.
b) “«<=": Assume p = 2. Then (? = (? is a well-known Hilbert space and its norm is
induced by the inner product.

“—": Assume that ¢? is Hilbert. Then it satisfies the parallelogram identity and
we have, for e; == (1,0,...) and ey = (0,1,0,...), that |e; + 62”12) + |lex — 62”; =
2 ||61H12) +2 ||62||12). For p < oo this leads to 22/P 4 2%/? = 2 + 2 which is true only for
p = 2. For p = oo this leads to the contradiction 1 +1 =2 + 2. Thus p = 2.

]



