

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald

FUNCTIONAL ANALYSIS EXCERCISE SHEET 9

Problem 1 (Equality in Minkowski's inequality).

- a) Let $1 and <math>0 \neq x, y \in \ell^p$. Prove that $||x + y||_p = ||x||_p + ||y||_p$ iff $y = \alpha x$ for some $\alpha \ge 0$.
- b) Let $p \in \{1, \infty\}$. Prove that there exists $0 \neq x, y \in \ell^p$ s.t. $||x + y||_p = ||x||_p + ||y||_p$ and $y \neq \alpha x$ for all $\alpha \in \mathbb{R}$.
- c) Let $1 \le p \le \infty$ and $q = \frac{p}{p-1}$. Prove that for every $x \in \ell^p$

$$\|x\|_{p} = \sup_{\substack{y \in \ell^{q} \\ \|y\|_{q}=1}} \left| \sum_{n=1}^{\infty} x_{n} y_{n} \right|.$$
(1)

[5+2+3 Points]

Problem 2 (INNER PRODUCT VS. PARALLELOGRAM IDENTITY).

a) Let $(X, \|\cdot\|)$ be a normed space over \mathbb{K} . Prove, for $\mathbb{K} = \mathbb{R}$ and for $\mathbb{K} = \mathbb{C}$, that the norm in X is induced by an inner product *iff* it satisfies the parallelogram identity

$$\forall x, y \in X : ||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2.$$
(2)

b) Let $p \in [1, \infty]$. Prove that ℓ^p is a Hilbert space *iff* p = 2.

[7+3 Points]

Problem 3 (EQUALITY IN INEQUALITIES).

- a) Let $1 . Let <math>x, y \in \ell^p$ with $||x||_p = ||y||_p = 1$. Prove that x = y if $\left\|\frac{x+y}{2}\right\|_p = 1$.
- b) Let 1 . Prove that <math>C([0, 1]) can be embedded isometrically in ℓ^p iff $p = \infty$. [2+8 Points]

Problem 4 (DUAL SPACES). Consider the Banach spaces (on $\mathbb{K} = \mathbb{R}$ or \mathbb{C})

$$c = \{x = (x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{K} \forall n \in \mathbb{N} \text{ and } \lim_{n \to \infty} x_n \text{ exists}\},\$$
$$c_0 = \{x = (x_n)_{n \in \mathbb{N}} \mid x_n \in \mathbb{K} \forall n \in \mathbb{N} \text{ and } \lim_{n \to \infty} x_n = 0\} \subset c,\$$

with the norm $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$.

- a) Prove that c_0 and c are not isometrically isomorphic.
- b) Prove that $c' \cong (c_0)' \cong \ell^1$.

[4+6 Points]

Deadline: June 20, 2016 14:00, for details see http://www.math.lmu.de/~gottwald/16FA/.

Summer term 2016 June 13, 2016