

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. Sørensen PhD A. Groh, S. Gottwald Summer term 2016 June 6, 2016

Functional Analysis

EXCERCISE SHEET 8

REMAINING SOLUTION

Problem 4 (DUAL OF ℓ^1 AND ℓ^{∞}).

a) Prove that $(\ell^1)' \cong \ell^{\infty}$, i.e. ℓ^{∞} is isometrically isomorphic to the dual of ℓ^1 .

n-th position

b) Let $\{e_n\}_{n\in\mathbb{N}}$ be given by $e_n := (0, \dots, 0, \overline{1}, 0, \dots)$ (i.e. $(e_n)_k := \delta_{nk}$ for $k \in \mathbb{N}$) and let $J: (c_0)' \to (\ell^{\infty})'$ be the linear map defined by $(Jg)(x) := \sum_n g(e_n)x_n$ for all $x \in \ell^{\infty}$ and $g \in (c_0)'$.

Prove that $(f(e_n))_{n\in\mathbb{N}}\in\ell^1$ for all $f\in(c_0)'$, that J is a linear isometry, and that every $f\in(\ell^\infty)'$ has a unique representation $f=f_1+f_2$, where $f_1\in J((c_0)')$ and $f_{2|c_0}=0$.

Remark: This proves that $(\ell^{\infty})' \cong \ell^1 \oplus (c_0)^{\perp}$, where \oplus denotes the direct sum and $(c_0)^{\perp} := \{ \eta \in (\ell^{\infty})' \mid \eta(x) = 0 \ \forall x \in c_0 \}$. From the Hahn-Banach theorem that will be proved later will follow that $(c_0)^{\perp} \neq \emptyset$ and hence that ℓ^1 can be embedded isometrically into but *not* onto $(\ell^{\infty})'$.

[4+6 Points]

Proof. b) • Let $f \in (c_0)'$ and for $n \in \mathbb{N}$ define $s_n := \overline{f(e_n)}/|f(e_n)|$ if $f(e_n) \neq 0$ and $s_n := 0$ otherwise. Then we have for all $N \in \mathbb{N}$ by the linearity of f that

$$\sum_{n=1}^{N} |f(e_n)| = \sum_{n=1}^{N} s_n f(e_n) = f\left(\sum_{n=1}^{N} s_n e_n\right)$$

$$\leq ||f||_{(c_0)'} \left\|\sum_{n=1}^{N} s_n e_n\right\|_{\infty} = ||f||_{(c_0)'} \max_{1 \leq n \leq N} |s_n| \leq ||f||_{(c_0)'},$$

and hence $\|(f(e_n))_{n\in\mathbb{N}}\|_1 = \sum_{n=1}^{\infty} |f(e_n)| \le \|f\|_{(c_0)'} < \infty$, i.e. $(f(e_n))_{n\in\mathbb{N}} \in \ell^1$.

• J is clearly linear. We have to prove that $||Jf||_{(\ell^{\infty})'} = ||f||_{(c_0)'}$ for all $f \in (c_0)'$. As above follows that $||(f(e_n))_n||_1 \le ||f||_{(c_0)'}$ for $f \in (c_0)'$ and hence by Hölder's inequality that

$$|(Jf)(x)| = \left| \sum_{n=1}^{\infty} f(e_n) x_n \right| \le ||(f(e_n))_n)||_1 ||x||_{\infty} \le ||f||_{(c_0)'} ||x||_{\infty}$$

for $f \in (c_0)'$ and $x \in \ell^{\infty}$, i.e. $||Jf||_{(\ell^{\infty})'} \leq ||f||_{(c_0)'}$. For the reverse inequality observe first, that, for $f \in (c_0)'$ and $x \in c_0$, we have that

$$(Jf)(x) = \sum_{n=1}^{\infty} f(e_n)x_n = \lim_{N \to \infty} \sum_{n=1}^{N} f(e_n)x_n = \lim_{N \to \infty} f\left(\sum_{n=1}^{N} x_n e_n\right) = f(x),$$

since $\sum_{n=1}^{N} x_n e_n \to x$ wrt. $\|\cdot\|_{\infty}$ (which in general is not true for $x \in \ell^{\infty}$). Then

$$||Jf||_{(\ell^{\infty})'} = \sup_{0 \neq x \in \ell^{\infty}} \frac{|(Jf)(x)|}{||x||_{\infty}} \ge \sup_{0 \neq x \in c_0} \frac{|(Jf)(x)|}{||x||_{\infty}} = \sup_{0 \neq x \in c_0} \frac{|f(x)|}{||x||_{\infty}} = ||f||_{(c_0)'}.$$

Hence J is an isometry.

- Let $f \in (\ell^{\infty})'$. Then $f_{|c_0|} \in (c_0)'$, since $||f_{|c_0|}||_{(c_0)'} = \sup_{0 \neq x \in c_0} \frac{|f_{|c_0|}(x)|}{||x||_{\infty}} \leq ||f||_{(\ell^{\infty})'}$. Thus $f_1 := J(f_{|c_0|}) \in J((c_0)')$ and $f_2 := f f_1 \in (\ell^{\infty})'$ and we have for $x \in c_0$ that $f_2(x) = \sum_{n=1}^{\infty} f_{|c_0|}(e_n)x_n f(x) = f(\sum_{n=1}^{\infty} x_n e_n) f(x) = 0$, i.e. $f_{2|c_0} = 0$.
- It remains to show uniqueness: Let $f_1, g_1 \in J((c_0)')$ and $f_2, g_2 \in (\ell^{\infty})'$ s.t. $f_{2|c_0} = g_{2|c_0} = 0$ and $f = f_1 + f_2 = g_1 + g_2$. This directly implies that $f_{1|c_0} = g_{1|c_0}$.

Let $h \in J((c_0)')$ and $\tilde{h} \in (c_0)'$ s.t. $h = J\tilde{h}$. Then for $x \in \ell^{\infty}$:

$$(Jh_{|c_0})(x) = \sum_{n=1}^{\infty} h_{|c_0}(e_n)x_n = \sum_{n=1}^{\infty} h(e_n)x_n = \sum_{n=1}^{\infty} (J\tilde{h})(e_n)x_n$$
$$= \sum_{n=1}^{\infty} \sum_{l=1}^{\infty} \tilde{h}(e_l)(e_n)_l x_n = \sum_{n=1}^{\infty} \tilde{h}(e_n)x_n = (J\tilde{h})(x).$$

This shows that $Jh_{|c_0} = J\tilde{h}$ and therefore $\tilde{h} = h_{|c_0}$ as J is injective.

Thus $f_1 = J(f_{1|c_0}) = J(g_{1|c_0}) = g_1$ and hence $f_2 = f - f_1 = f - g_1 = g_2$.