

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 May 30, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 7

Problem 1 (OPERATOR NORMS). Consider the Banach space $(C([0,1]), \|\cdot\|_{\infty})$. Let the maps $T_j : C([0,1]) \to C([0,1]), j = 1, ..., 4$, for $f \in C([0,1])$ and $x \in [0,1]$ be defined as follows:

- a) $(T_1f)(x) \coloneqq \int_0^x f(y) \mathrm{d}y.$
- b) $(T_2f)(x) \coloneqq x^2f(0).$
- c) $(T_3f)(x) \coloneqq f(x^2).$
- d) $(T_4f)(x) := (T_1^n f)(x)$, where $T_1^n, n \in \mathbb{N}$, is the *n*-fold composition of T_1 .

Prove in each case that this defines a bounded linear operator, and compute its norm. [2+2+2+4 Points]

Problem 2 (SEPARABILITY).

- a) Let $1 \leq p < \infty$. Prove that ℓ^p is separable.
- b) Prove that ℓ^{∞} is *not* separable.

[6+4 Points]

Problem 3 (BOUNDED MAPS). Let X be any set and $\mathbb{K} = \mathbb{R}$ or \mathbb{C} . Define the set of (\mathbb{K} -valued) bounded maps on X by

$$\mathfrak{B}(X,\mathbb{K}) \coloneqq \{f: X \to \mathbb{K} \mid \exists C_f \ge 0 \ \forall x \in X : |f(x)| \le C_f\}.$$

For $f, g: X \to \mathbb{K}$, $\alpha \in \mathbb{K}$ define $\alpha f + g: X \to \mathbb{K}$ by $(\alpha f + g)(x) \coloneqq \alpha f(x) + g(x)$ for all $x \in X$, $fg: X \to \mathbb{K}$ by $(fg)(x) \coloneqq f(x)g(x)$ for all $x \in X$, and for $f \in \mathfrak{B}(X, \mathbb{K})$ let $\|f\|_{\infty} \coloneqq \sup\{|f(x)| \mid x \in X\}.$

- a) Prove that $(\mathfrak{B}(X,\mathbb{K}),(f,g)\mapsto fg)$ is a \mathbb{K} -algebra¹.
- b) Find an example of a finite, and a countable X such that each $\mathfrak{B}(X, \mathbb{K})$ is isometrically isomorphic to a well-known space introduced in class.
- c) Prove that $\|\cdot\|_{\infty}$ is a norm on $\mathfrak{B}(X,\mathbb{K})$ satisfying the inequality $\|fg\|_{\infty} \leq \|f\|_{\infty} \|g\|_{\infty}$ for all $f, g \in \mathfrak{B}(X,\mathbb{K})$.
- d) Prove that $(\mathfrak{B}(X,\mathbb{K}), \|\cdot\|_{\infty})$ is a Banach space.

[2+1+2+5 Points]

¹A K-algebra $A = (V, \phi)$ is a K-vector space V equipped with a K-bilinear map $\phi : V \times V \to V$ called multiplication.

Problem 4 (OPERATOR NORM). Let $X := \{x = (x_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N} : x_n \in \mathbb{R}\}$ denote the set of all sequences in \mathbb{R} . Consider the operator $H : X \to X$ defined by

$$(Hx)_n \coloneqq \frac{1}{n} \sum_{j=1}^n x_j, \qquad n \in \mathbb{N}.$$
 (1)

a) For p > 1, and $a = (a_n)_{n=1}^{\infty} \in X$ with $a_n \ge 0$ for all $n \in \mathbb{N}$, prove that

$$(Ha)_{n}^{p} - \frac{p}{p-1}(Ha)_{n}^{p-1}a_{n} \leq \frac{1}{p-1}((n-1)(Ha)_{n-1}^{p} - n(Ha)_{n}^{p}).$$
 (2)

Hint: Young's inequality.

b) For $p > 1, N \in \mathbb{N}$, and $a = (a_n)_{n=1}^{\infty} \in X$ with $a_n \ge 0$ for all $n \in \mathbb{N}$, prove that

$$\left(\sum_{n=1}^{N} (Ha)_{n}^{p}\right)^{1/p} \leq \frac{p}{p-1} \left(\sum_{n=1}^{N} a_{n}^{p}\right)^{1/p}.$$
(3)

Hint: Hölder's inequality.

- c) Prove that $H: \ell^p \to \ell^p$ is a well-defined, bounded linear operator.
- d) Compute $||H||_{B(\ell^p)}$.

[2+2+3+3 Points]

Deadline: June 6, 2016 14:00, for details see http://www.math.lmu.de/~gottwald/16FA/.