
Prof. T. Ø. Sørensen PhD
A. Groh, S. Gottwald

Summer term 2016
May 16, 2016

Functional Analysis
Excercise Sheet 5

Remaining solutions

Problem 1 (Contractions, Compactness & Completeness).

a) Let (X, d) be a non-empty compact metric space and let Φ : X → X be such that

d(Φ(x),Φ(y)) < d(x, y), for all x, y ∈ X, x 6= y. (1)

Prove that Φ has a unique fixed point x0 = limn→∞Φn(x), where x ∈ X arbitrary.

b) Find a non-empty compact metric space (X, d) and a function Φ : X → X such
that d(Φ(x),Φ(y)) ≤ d(x, y) for all x, y ∈ X, x 6= y and Φ does not have a fixed
point. What is the difference to a)?

c) Prove that there does not exist a surjective contraction from a compact metric space
with more than one elements onto itself.

d) Let (X, d) be a non-empty complete metric space and let Φ : X → X be such that
Φm is a contraction for some m ∈ N. Prove that Φ has a unique fixed point.

e) Let (X, d) be a non-empty metric space such that any contraction Φ : E → E on any
non-empty closed subset E ⊆ X has a fixed point. Prove that (X, d) is complete.

[3+2+2+2+3 Points]

Proof. a) Uniqueness : Assume there exists x, y ∈ X with x 6= y s.t. Φ(x) = x and
Φ(y) = y. Then d(x, y) = d(Φ(x),Φ(y)) < d(x, y). Contradiction! Thus the fixed
point is unique (if it exists at all).

Existence: Consider the the function F : X → R+, x 7→ d(x,Φ(x)). Using the
triangle inequality and (1) we get for x 6= y, that

F (x) = d(x, φ(x)) ≤ d(x, y) + d(y, φ(y)) + d(φ(y), φ(x)) < 2 d(x, y) + F (y),

and thus by symmetry, that |F (x) − F (y)| ≤ 2 d(x, y) for all x, y ∈ X. This im-
plies that F is continuous. Since X is compact, there exists x0 ∈ X such that
F (x0) ≤ F (x) for all x ∈ X. Assume x0 6= Φ(x0). Then by (1) F (Φ(x0)) =
d(Φ(x0),Φ(Φ(x0))) < d(x0,Φ(x0)) = F (x0). This contradicts, that x0 minimizes
F . Thus x0 is a fixed point.

Hint : Consider the non-empty compact metric space ([0, 1], dEucl) and the map
Φ : [0, 1]→ [0, 1], x 7→ 1

2
x2. It satisfies |Φ(x)−Φ(y)| = 1

2
|x2− y2| = 1

2
|x+ y||x− y| <
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|x− y| for all x, y ∈ [0, 1] with x 6= y. But Φ is not a contraction, since its Lipschitz

constant L := sup0≤x<y≤1
|Φ(x)−Φ(y)|
|x−y| = sup0≤x<y≤1 |x + y| = 1. This shows in parti-

cularly, that (1) is not strong enough to get a Lipschitz constant L < 1. Thus the
Banach fixed-point theorem can not be used here.

It remains to show, that x0 = limn→∞Φn(x), where x ∈ X is arbitrary. Let x ∈ X
and xn := Φn(x) for all n ∈ N . Wlog xn 6= x0 for all n ∈ N (otherwise we are done).

Since X is compact and, since X is a metric space, sequentially compact, the se-
quence {xn}n has a convergent subsequence, say xnl

→ y ∈ X for l → ∞. Since Φ
is (Lipschitz-)continuous it is also sequentially continuous and thus Φ(xnl

)→ Φ(y)
for l→∞.

By (1) we have 0 < d(xn+1, x0) = d(Φ(xn),Φ(x0)) < d(xn, x0) for all n ∈ N. Thus
{d(xn, x0)}n is a strictly decreasing sequence bounded from below by 0. Thus it
is convergent so some value a := limn→∞ d(xn, x0) ≥ 0. Thus the subsequences
{d(xnl

, x0)}n and {d(xnl+1, x0)}n also converge to a, i.e. liml→∞ d(xnl
, x0) = a and

liml→∞ d(xnl+1, x0) = a.

By the continuity of d (i.e. x 7→ d(x, x0)) we have that d(xnl
, x0) → d(y, x0) = a

and d(xnl+1, x0) = d(Φ(xnl
), x0)→ d(Φ(y), x0) = a for l→∞.

If y 6= x0 we get in total by (1):

0 < d(y, x0) = a = d(Φ(y), x0) = d(Φ(y),Φ(x0)) < d(y, x0).

Contradiction! Thus y = x0 and a = d(y, x0) = 0. Hence d(xn, x0)→ 0 i.e. Φn(x)→
x0 for n→∞.

b) Equipp X := {(x, y) ∈ R2 | x2+y2 = 1} with the Euclidian metric d and let Φ be the
rotation by π/2, i.e. Φ : X → X, (x, y) 7→ (−y, x). Then X is bounded and closed
and hence compact and for all (x, y), (x′, y′) ∈ X we have d(Φ(x, y),Φ(x′, y′)) =

d((−y, x), (−y′, x′)) = d((x, y), (x′, y′)). Assume that Φ(x, y) = (−y, x)
!

= (x, y) for
some (x, y) ∈ X. Then x = y = 0. Contradiction, since (0, 0) 6∈ X. Thus Φ does not
have a fixed point.

In contrast to a) equality was allowed (and used) in d(Φ(x),Φ(y)) < d(x, y).

c) If |X| = 1 and d any metric on X, then (X, d) is a non-empty compact me-
tric space and the identity map Id : X → X a surjective contraction, because
d(Id(x), Id(x)) = 0 ≤ 1

2
d(x, x) = 0.

Let (X, d) with |X| > 1 be a compact metric space and assume that Φ is a surjec-
tive contraction. By Tutorial 4, Problem 2(ii) X is bounded and thus diam(X) :=
supx,y∈X d(x, y) < ∞. Since |X| > 1 we also have diam(X) > 0. As Φ is surjective
we have Φ(X) = X and thus diam(Φ(X)) = diam(X).

As Φ is a contraction with constant L < 1 we have on the other hand that

diam(Φ(X)) = sup
p,q∈Φ(X)

d(p, q) = sup
x,y∈X

d(Φ(x),Φ(y))

≤ L sup
x,y∈X

d(x, y) = L diam(X) < diam(X) = diam(Φ(X)).

Contradiction!
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d) Let x0 be the unique fixed point for the contraction Φm, which exists by the Banach
fixed-point theorem, since X is complete. Due to Φm(Φ(x0)) = Φ(Φm(x0)) = Φ(x0)
Φ(x0) is also a fixed point for Φm. By uniqueness follows x0 = Φ(x0). Thus Φ has
a fixed point. Assume that y0 is another fixed point for Φ. Then y0 = Φ(y0) =
Φ2(y0) = . . . = Φm(y0). Thus y0 is a fixed point of Φm and by uniqueness follows
y0 = x0.

e) Let (X, d) be a non-empty metric space such that any contraction Φ : E → E on any
non-empty closed subset E ⊆ X has a fixed point. Prove that (X, d) is complete.

f) Let {xn}n be a Cauchy sequence in (X, d). Wlog it is not eventually constant,
since we are done otherwise. Wlog N 3 n 7→ xn is injective (i.e. no value of the
sequence appears more than once). Otherwise we could choose a subsequence, since
the sequence is not eventually constant. Assume that {xn}n is not convergent.

Consider I : X → R, x 7→ inf{d(x, xn) | n ∈ N s.t. xn 6= x}. Then I(x) > 0 for all
x ∈ X, since {xn}n is not convergent [I(x) = 0 ⇐⇒ xnk

→ x for k →∞ for some
subsequence {xnk

}k (cf. Lemma 1.47)].

Inductively we define a subsequence of {xn}n: Let N1 := 1 and y1 := xN1 . Next
assume that Nj and yj are defined for some j ∈ N. Since {xn}n is Cauchy, there
exists Nj+1 > Nj s.t. d(xk, xl) ≤ 1

2
I(yj)(= εj) for all k, l ≥ Nj+1. Let yj+1 := xNj+1

.

Let E := {yj | j ∈ N} and Φ : E → E, yj 7→ Φ(yj) := yj+1. Then Φ is a contraction,
since for k > l we have Nk+1 ≥ Nl+1 and thus by definition of {yj}j and of I:

d(Φ(yk),Φ(yl)) = d(xNk+1
, xNl+1

) ≤ 1

2
I(yl) ≤

1

2
d(yl, yk).

If E was closed, then Φ would by assumption have a fixed point y = yk ∈ E for some
k ∈ N, i.e. yk = y = Φ(y) = Φ(yk) = yk+1 6= yk, in contradiction to the assumption
that n 7→ xn is injective. Thus E is not closed and E ) E.

Let y ∈ E \E 6= ∅. Then y is a limit point (Lemma 1.10) and there exists a sequence
{yjk}k in E converging to y. Thus we have a convergent subsequence {yjk}k of the
Cauchy sequence {xn}n. By Lemma 1.47 {xn}n then is convergent in contradiction
to the assumption at the beginning. Thus {xn}n is convergent and hence (X, d)
complete.

Problem 3 (Product space & Compactness). Let (X, TX) and (Y, TY ) be compact
topological spaces. Prove that (X × Y, TX×Y ) is compact, where TX×Y is the product
topology on X × Y . [10 Points]

Proof. First we need the following
Claim: Let (Z, T ) be a topological space and B a base for T . Then Z is compact, if every
open cover of Z by sets from B has a finite subcover. (Cf. Tutorial 4, Problem 2(iii))

Proof of claim: Let Z =
⋃

i∈I Ui be an open cover of Z with Ui ∈ T for all i ∈ I. For
each z ∈ Z choose Bz ∈ B and iz ∈ I s.t. z ∈ Bz ⊆ Uiz . This is possible, because B is a
base. Then Z =

⋃
z∈Z Bz is an open cover of Z by sets of B, which by assumption admits

a finite subcover Z =
⋃N

j=1Bzj . Since Bzj ⊆ Uizj
for j = 1..N we have a finite subcover

Z =
⋃N

j=1 Uizj
. Thus Z is compact.
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Now we can prove, that X × Y is compact in the product topology.
Let M := {Ri × Si | i ∈ I} be an open cover of X × Y by rectangles, i.e. Ri ∈ TX and
Si ∈ TY for all i ∈ I. By the above claim it is enough to show that there exists a finite
subcover, since rectangles form a basis of the product topology.
Let x ∈ X. For all y ∈ Y exists Ry × Sy ∈ M s.t. (x, y) ∈ Ry × Sy. Note, that for all
y ∈ Y Ry is a nbhd. of x and Sy a nbhd. of y. Then {Sy | y ∈ Y } is an open cover of Y .

Since Y is compact, there exists y1, . . . , yN s.t.
⋃N

j=1 Syj ⊇ Y . In addition Ux :=
⋂N

j=1Ryj

is a nbhd of x in X and Ux × Y ⊆
⋃N

j=1(Ryj × Syj).
Thus {Ux | x ∈ X} is an open cover of X, which due to compactness has a finite subcover
{Ux1 , . . . , UxM

}. Finally we have that

X × Y ⊆
M⋃
i=1

Uxi
× Y ⊆

M⋃
i=1

Nxi⋃
j=1

(Rxi
yj
× Sxi

yj
),

i.e. {(Rxi
yj
×Sxi

yj
| i = 1, . . . ,M, i = 1, . . . Nxi

} is a finite subcover ofM and hence X × Y
compact.
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