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REMAINING SOLUTIONS

Problem 1 (CONTRACTIONS, COMPACTNESS & COMPLETENESS).

a) Let (X, d) be a non-empty compact metric space and let ® : X — X be such that

d(®(z), ®(y)) < d(x,y), for all z,y € X,z #y. (1)

Prove that ® has a unique fixed point z¢ = lim,_,, ®"(z), where x € X arbitrary.

b) Find a non-empty compact metric space (X,d) and a function ® : X — X such
that d(®(z), P(y)) < d(z,y) for all z,y € X, x # y and ® does not have a fixed
point. What is the difference to a)?

c) Prove that there does not exist a surjective contraction from a compact metric space
with more than one elements onto itself.

d) Let (X, d) be a non-empty complete metric space and let ® : X — X be such that
®™ is a contraction for some m € N. Prove that ® has a unique fixed point.

e) Let (X, d) be a non-empty metric space such that any contraction ® : £ — F on any
non-empty closed subset £ C X has a fixed point. Prove that (X, d) is complete.
[3+2+42+2+3 Points]

Proof. a) Uniqueness: Assume there exists z,y € X with z # y s.t. ®(x) = x and
®(y) = y. Then d(x,y) = d(P(x),P(y)) < d(z,y). Contradiction! Thus the fixed
point is unique (if it exists at all).

FEzistence: Consider the the function F' : X — R,z +— d(z,®(x)). Using the
triangle inequality and we get for x # y, that

F(x) =d(x,¢(x)) < d(z,y) +d(y, o(y)) + d(e(y), ¢(v)) < 2d(x,y) + F(y),

and thus by symmetry, that |F(x) — F(y)| < 2d(z,y) for all x;y € X. This im-
plies that F is continuous. Since X is compact, there exists zo € X such that
F(zg) < F(z) for all z € X. Assume xy # ®(z9). Then by F(®(x0)) =
d(®(zg), D(P(20))) < d(zo,P(x9)) = F(z0). This contradicts, that xy minimizes
F'. Thus z is a fixed point.

Hint: Consider the non-empty compact metric space ([0, 1], dgyec ) and the map
®:[0,1] — [0,1], — 12?. It satisfies |P(z) — D(y)| = 3|2? —¢?| = S|z +yllz —y| <
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|z —y| for all z,y € [0, 1] with = # y. But ® is not a contraction, since its Lipschitz
constant L = SUPg<,,< w = SUPg<,<y<1 |Z +y| = 1. This shows in parti-
cularly, that is not strong enough to get a Lipschitz constant L < 1. Thus the

Banach fixed-point theorem can not be used here.

It remains to show, that g = lim, ., ®"(x), where x € X is arbitrary. Let z € X
and x,, = ®"(z) for all n € N. Wlog z,, # z, for all n € N (otherwise we are done).

Since X is compact and, since X is a metric space, sequentially compact, the se-
quence {z,}, has a convergent subsequence, say z,, — y € X for [ — oco. Since ®
is (Lipschitz-)continuous it is also sequentially continuous and thus ®(z,,) — ®(y)
for [ — oc.

By we have 0 < d(zp41,70) = d(P(x,,), P(20)) < d(zp, o) for all n € N. Thus
{d(zn,x0)}n is a strictly decreasing sequence bounded from below by 0. Thus it
is convergent so some value a = lim, , d(z,, 7o) > 0. Thus the subsequences
{d(2y,, 20) }n and {d(zn,+1,%0)}n also converge to a, i.e. limy_,o d(zy,, o) = a and
limy o0 d(p, 41, o) = a.

By the continuity of d (i.e. x — d(z,xz¢)) we have that d(x,,,zo) — d(y,z0) = a
and d(xp,+1,x0) = d(P(zy,), z0) = d(P(y), z0) = a for | — oco.

If y # xo we get in total by :
0 < d(y,z0) = a =d(®(y), o) = d(P(y), D(0)) < d(y, zo).

Contradiction! Thus y = o and a = d(y, zo) = 0. Hence d(x,,, z9) — 0 i.e. D" (z) —
g for n — oo.

Equipp X = {(z,y) € R? | 2>+y* = 1} with the Euclidian metric d and let ® be the
rotation by 7/2, i.e. ® : X — X, (x,y) — (—y,z). Then X is bounded and closed
and hence compact and for all (z,y),(2',y) € X we have d(®(z,y), (', y)) =
d((=y,2), (/7)) = d((z,y), (+',y/))- Assume that @(z,y) = (~y,7) = (z,y) for
some (z,y) € X. Then z = y = 0. Contradiction, since (0,0) & X. Thus ¢ does not
have a fixed point.

In contrast to a) equality was allowed (and used) in d(®(x), ®(y)) < d(zx,y).

If |X| = 1 and d any metric on X, then (X,d) is a non-empty compact me-
tric space and the identity map Id : X — X a surjective contraction, because
d(Id(z),Id(z)) =0 < id(z,z) = 0.

Let (X,d) with |X| > 1 be a compact metric space and assume that ¢ is a surjec-
tive contraction. By Tutorial 4, Problem 2(ii) X is bounded and thus diam(X) =
sup, ,ex d(7,y) < oo. Since |X| > 1 we also have diam(X) > 0. As ® is surjective
we have ®(X) = X and thus diam(®(X)) = diam(X).

As @ is a contraction with constant L < 1 we have on the other hand that

diam(®(X)) = sup d(p,q) = sup d(P(z),P(y))

p,q€P(X) z,yeX

< L sup d(z,y) = Ldiam(X) < diam(X) = diam(®(X)).

z,yeX

Contradiction!



d) Let xy be the unique fixed point for the contraction ®™, which exists by the Banach
fixed-point theorem, since X is complete. Due to ®™(®(xg)) = (P (xg)) = P(xo)
®(z) is also a fixed point for ™. By uniqueness follows zg = ®(xy). Thus ¢ has
a fixed point. Assume that y, is another fixed point for ®. Then yy = P(yy) =
P2(yp) = ... = ®™(yp). Thus yp is a fixed point of ®™ and by uniqueness follows

Yo = Xo-

e) Let (X, d) be a non-empty metric space such that any contraction ® : £ — F on any
non-empty closed subset £ C X has a fixed point. Prove that (X, d) is complete.

f) Let {z,}, be a Cauchy sequence in (X,d). Wlog it is not eventually constant,
since we are done otherwise. Wlog N > n +— x,, is injective (i.e. no value of the
sequence appears more than once). Otherwise we could choose a subsequence, since
the sequence is not eventually constant. Assume that {z,}, is not convergent.

Consider [ : X — R,z — inf{d(z,z,) | n € Ns.t. x, # x}. Then I(z) > 0 for all
x € X, since {z,}, is not convergent [[(z) =0 <= z,, — = for k — oo for some
subsequence {x,, }x (cf. Lemma 1.47)].

Inductively we define a subsequence of {z,},: Let Ny := 1 and y; = zy,. Next
assume that N; and y; are defined for some j € N. Since {z,}, is Cauchy, there
exists Nji1 > Nj s.t. d(ag, 21) < 51(y;)(= ;) for all k,1 > Nji. Let yj40 = an,,, -

Let £ :={y; | jeN}and ®: £ — E,y; — ®(y;) = yj4+1. Then ® is a contraction,
since for k > [ we have Ny; > N1 and thus by definition of {y;}; and of I:

d<q)(yk)7 (I)(yl)) = d<xNk+1>:CNz+1) <

I(y) < zd(yi, ).

N | —
N | —

If E was closed, then ® would by assumption have a fixed point y = y, € E for some
keN, ie y, =y =(y) = ®(Yx) = Yx1+1 # Yi, in contradiction to the assumption
that n — x,, is injective. Thus E is not closed and £ 2 E.

Let y € E\ E # 0. Then y is a limit point (Lemma 1.10) and there exists a sequence
{y;. }x in E converging to y. Thus we have a convergent subsequence {y;, }» of the
Cauchy sequence {z,},. By Lemma 1.47 {x,}, then is convergent in contradiction
to the assumption at the beginning. Thus {z,}, is convergent and hence (X, d)
complete.

[]

Problem 3 (PRODUCT SPACE & COMPACTNESS). Let (X, Tx) and (Y, 7y) be compact
topological spaces. Prove that (X x Y, 7Txxy) is compact, where Tx«y is the product
topology on X x Y. [10 Points]

Proof. First we need the following
Claim: Let (Z,7T) be a topological space and B a base for T. Then Z is compact, if every
open cover of Z by sets from B has a finite subcover. (Cf. Tutorial 4, Problem 2(iii))

Proof of claim: Let Z = J,c; U; be an open cover of Z with U; € T for all i € I. For
each z € Z choose B, € B and i, € I s.t. z € B, C U,;_. This is possible, because B is a
base. Then Z = J,., B. is an open cover of Z by sets of B, which by assumption admits

a finite subcover Z = Ujvzl B.,. Since B, C Uizj for j = 1..N we have a finite subcover
Z = U;VZI Ui.,. Thus Z is compact. O



Now we can prove, that X x Y is compact in the product topology.

Let M = {R; x S; | i € I} be an open cover of X x Y by rectangles, i.e. R; € Tx and
S; € Ty for all ¢ € I. By the above claim it is enough to show that there exists a finite
subcover, since rectangles form a basis of the product topology.

Let z € X. For all y € Y exists R, x S, € M s.t. (z,y) € R, x S,. Note, that for all
y € Y R, is a nbhd. of  and S, a nbhd. of y. Then {S, | y € Y} is an open cover of Y.
Since Y is compact, there exists y,...,yn s.t. U;VZI Sy, 2 Y. In addition U, = ﬂjvzl R,
is a nbhd of z in X and U, x Y C UL, (R,, x S,)).

Thus {U, | x € X} is an open cover of X, which due to compactness has a finite subcover
{Usys ..., Uy, }. Finally we have that

M Ngz,
XxYCUU xYCUU (R x o),

i=1j=1

ie. {(RgJ X Symj i=1,...,M, i=1,...N,} is a finite subcover of M and hence X x Y
compact. N




