

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 May 16, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 5

Problem 1 (CONTRACTIONS, COMPACTNESS & COMPLETENESS).

a) Let (X, d) be a non-empty compact metric space and let $\Phi: X \to X$ be such that

$$d(\Phi(x), \Phi(y)) < d(x, y), \text{ for all } x, y \in X, x \neq y.$$
(1)

Prove that Φ has a unique fixed point $x_0 = \lim_{n \to \infty} \Phi^n(x)$, where $x \in X$ arbitrary.

- b) Find a non-empty compact metric space (X, d) and a function $\Phi : X \to X$ such that $d(\Phi(x), \Phi(y)) \leq d(x, y)$ for all $x, y \in X, x \neq y$ and Φ does not have a fixed point. What is the difference to a)?
- c) Prove that there does not exist a surjective contraction from a compact metric space with more than one elements onto itself.
- d) Let (X, d) be a non-empty complete metric space and let $\Phi : X \to X$ be such that Φ^m is a contraction for some $m \in \mathbb{N}$. Prove that Φ has a unique fixed point.
- e) Let (X, d) be a non-empty metric space such that any contraction $\Phi : E \to E$ on any non-empty closed subset $E \subseteq X$ has a fixed point. Prove that (X, d) is complete. [3+2+2+2+3 Points]

Problem 2 (TOPOLOGIES AND CONVERGENT SEQUENCES, METRICS & NORMS).

- a) Prove or disprove: If two topological spaces (X, \mathcal{T}_1) and (X, \mathcal{T}_2) have the same convergent sequences then $\mathcal{T}_1 = \mathcal{T}_2$.
- b) Let (\mathbb{R}, d_1) and (\mathbb{R}, d_2) be metric spaces, with $d_1(x, y) = |x y|$ and $d_2(x, y) = |\phi(x) \phi(y)|$, where $\phi(x) = x/(1 + |x|)$ for $x, y \in \mathbb{R}$. Prove that d_1 and d_2 induce the same topology on \mathbb{R} , but that (\mathbb{R}, d_1) is complete and (\mathbb{R}, d_2) not.
- c) Let $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ be normed spaces, and let $\mathcal{T}_1, \mathcal{T}_2$ be the topologies induced by $\|\cdot\|_1$, resp. $\|\cdot\|_2$. Prove that \mathcal{T}_2 is finer than \mathcal{T}_1 (i.e. $\mathcal{T}_1 \subseteq T_2$) iff there exists C > 0s.t. $\|x\|_1 \leq C \|x\|_2$ for all $x \in X$.
- d) Prove that two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ induce the same topology on a space X *iff* there exists c, C > 0 s.t. $c \|x\|_2 \le \|x\|_1 \le C \|x\|_2$ for all $x \in X$.

[2+4+3+1 Points]

Problem 3 (PRODUCT SPACE & COMPACTNESS). Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be compact topological spaces. Prove that $(X \times Y, \mathcal{T}_{X \times Y})$ is compact, where $\mathcal{T}_{X \times Y}$ is the product topology on $X \times Y$. [10 Points]

Problem 4 (FUNCTION SPACES).

- a) Let $C^1([0,1])$ denote the space of differentiable functions on [0,1] with continuous derivative. Find the interior of $C^1([0,1])$ in $(C([0,1]), \|\cdot\|_{\infty})$, where the sup-norm is given by $\|f\|_{\infty} \coloneqq \sup_{x \in [0,1]} |f(x)|$ for $f \in C([0,1])$.
- b) Let $C_{00}(\mathbb{R})$ denote the space of continuous functions with compact support¹ in \mathbb{R} . Consider the metric space $(C_b(\mathbb{R}), d_{\infty})$ with

 $C_b(\mathbb{R}) \coloneqq \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous and } \sup_{x \in \mathbb{R}} |f(x)| \le C_f \text{ for some } C_f \ge 0\}$

and $d_{\infty}(f,g) \coloneqq \sup_{x \in \mathbb{R}} |f(x) - g(x)|$ for all $f, g \in C_b(\mathbb{R})$. Find the closure of $C_{00}(\mathbb{R})$ in $(C_b(\mathbb{R}), d_{\infty})$.

[3+5 Points]

Deadline: May 23, 2016 14:00, for details see http://www.math.lmu.de/~gottwald/16FA/.

¹The support of a continuous function $f : \mathbb{R} \to \mathbb{R}$ is the set $\operatorname{supp}(f) \coloneqq \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$.