
Prof. T. Ø. Sørensen PhD
A. Groh, S. Gottwald

Summer term 2016
May 9, 2016

Functional Analysis
Excercise Sheet 4

Solution

Problem 1 (Compactness).

a) Consider A := (0, 1) as a subset of the metric space (R, dEucl). Find an open cover
of A which does not admit a finite subcover.

b) Consider B := [0, 1] ∩Q as a subset of the metric space (Q, dEucl). Prove that B is
closed and bounded in Q and find an open cover of B which does not admit a finite
subcover.

c) Find a Hausdorff non-compact space, a finite compact non-Hausdorff space, and an
infinite compact non-Hausdorff space.

[2+4+4 Points]

Proof. a) Let Un := ( 1
n
, 1 − 1

n
) for all n > 2. Let x ∈ A. Then there exists n ∈ N

s.t. 0 < 1
n
< x < 1 − 1

n
. Thus x ∈ Un. Hence

⋃∞
n=3 Un ⊇ A and thus {Un}n≥3

is an open cover of A. Assume there exists a finite subcover Un1 , . . . , UnN
. Then

M := max{n1, . . . nN} <∞ and A 6⊆
⋃N
j=1 Unj

= ( 1
M
, 1− 1

M
). Contradiction!

b) The intervall [0, 1] is closed in (R, TEucl). By Sheet 1, Problem 3a) B is closed in
(R ∩ Q = Q, TQ), where TQ is the relative topology of Q wrt. TEucl. By Tutorial 5
TQ is equal to the topology induced by dEucl|Q×Q. Thus B is closed in (Q, dEucl).
B is bounded, since B ⊆ B2(0) = {y ∈ Q | d(0, y) < 2 <∞}.
Let Un := [(−1, 1√

2
− 1
n
)∪( 1√

2
+ 1
n
, 2)]∩Q for all n > 2. These sets are open in (Q, dEucl)

by analog arguments as above, since (−1, 1√
2
− 1

n
)∪ ( 1√

2
+ 1

n
, 2) is open in (R, TEucl).

Hence
⋃∞
n=3 Un = [(−1, 2)\{ 1√

2
}]∩Q = (−1, 2)∩Q ⊇ B and thus {Un}n≥3 is an open

cover of B, since 1√
2
6∈ Q. Assume there exists a finite subcover Un1 , . . . , UnN

. Then

M := max{n1, . . . nN} <∞ and B 6⊆
⋃N
j=1 Unj

= [(−1, 1√
2
− 1

M
)∪ ( 1√

2
+ 1

M
, 2)]∩Q,

since [ 1√
2
− 1

M
, 1√

2
+ 1

M
] ∩Q 6= ∅ (Q is dense in R). Contradiction!

c) • Hausdorff, non-compact : (R, dEucl) is as a metric space Hausdorff and first
countable. If it were compact, it were sequentially compact (cf. lecture) and
every sequence had a convergent subsequence. But {n}n does not have a con-
vergent subsequence. Thus (R, dEucl) is non-compact.
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• finite, compact, non-Hausdorff : Let (X, T ) be a finite topological space. Let
{Un}n be an open cover of X. Since X = {x1, . . . xN} is finite there exist
n1, . . . , nN s.t. xi ∈ Uni

for i = 1, . . . , N and thus
⋃N
i=1 Uni

⊇ X. Thus every
finite space is compact, independent of the topology.

EquippingX with the indiscrete or the co-finite topology makes it non-Hausdorff.

• infinite, compact, non-Hausdorff : (X, Tindisc) with X infinite is compact and
Hausdorff, since every open covering is already finite.

Problem 2 (Homeomorphisms).

a) Let X, Y be topological spaces and f : X → Y a continuous function.

Prove that f(X) is compact if X is compact.

b) Let X := [0, 1) and Y := {(x, y) ∈ R2 | x2 + y2 = 1} be equipped with the relative
topologies induced by the Euclidian topologies on R resp. R2.

Prove that
ϕ : X → Y, θ 7→ (cos(2πθ), sin(2πθ))

is a continuous bijection, but not a homeomorphism. Are X and Y homeomorphic?

c) Let X be a compact space and let Y be a Hausdorff space.

Prove or disprove: If f : X → Y is a continuous bijection then it is a homeomor-
phism.

d) Let X be a compact Hausdorff space and let Y be a compact space.

Prove or disprove: If f : X → Y is continuous bijection then it is a homeomorphism.
[2+5+2+1 Points]

Proof.

a) Let
⋃
i∈I Ui be an open cover of f(X) ⊆ Y . Then f−1(Ui) ⊆ X is open for all

i ∈ I, since f is continuous. Furthermore
⋃
i∈I f

−1(Ui) is an open cover of X. [Let
x ∈ X, then f(x) ∈

⋃
i∈I Ui, i.e. f(x) ∈ Ui0 for some i0 ∈ I. Finally x ∈ f−1(Ui0)

and thus X ⊆
⋃
i∈I f

−1(Ui).] Since X is compact there exists i1, . . . iN ∈ I s.t.

X ⊆
⋃N
j=1 f

−1(Uij) and finally f(X) ⊆
⋃N
j=1 Ui. Thus f(X) is compact.

Hint: This implies that if Φ : X → Y is a homeomorphism, then X is compact iff
Y is compact. Indeed, if X is compact, then we have by a) and since Φ is surjective,
that Φ(X) = Y is compact. On the other hand, if Y is compact, then by a) since
Φ−1 is continuous and surjective, that Φ−1(Y ) = X is compact.

b) • ϕ injective: Let θ1, θ2 ∈ X s.t. ϕ(θ1) = ϕ(θ2). Then cos(2πθ1) = cos(2πθ2) and
sin(2πθ1) = sin(2πθ2) and hence θ1 = θ2, since cos and sin are bijective on
[0, 2π) (cf. Analysis 1).

• ϕ surjective: Let (x, y) ∈ Y . Then we find an angle 2πθ with θ ∈ X between
the positive x-axis and the radial line from 0 to (x, y) s.t. ϕ(θ) = (x, y).

• ϕ continuous : That ϕ is continuous as a function from X to R2 follows from
Analysis 2. Therefore it is also continuous as ϕ : X → Y wrt. to the relative
topology of Y .
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• ϕ−1 not continuous : We show, that ϕ−1 is not continuous at x = (1, 0). Set

ε := 1
4

and let δ > 0 be given. Wlog δ < 1. Set y := (1− δ2

4
,−
√

δ2

2
− δ4

16
). Then

y2 = 1 and thus y ∈ Y . In addition we have |x− y| = δ√
2
< δ. But on the other

hand |ϕ−1(x) − ϕ−1(y)| = |ϕ−1(y)| > 3
4
> ε. Thus ϕ−1 can not be continuous

at x.

• Assume there exists a homeomorphism Φ : X → Y . By the hint in a) X is
compact iff Y is compact. But X is not closed and hence not compact in R,
whereas Y is closed and bounded and hence compact in R2. Contradiction!

c) We only have to show, that g := f−1 : Y → X is continuous. Let U ⊆ X be open.
Then A := X \U is closed. g−1(U) is open iff Y \ g−1(U) = g−1(X \U) = g−1(A) =
f(A) is closed. By a) and as f is surjective, we have that Y = f(X) is compact. By
Prop. 1.44 follows, that A ⊆ Y is compact as well. Since f is continuous we have
by a proof similar to a) that f(A) is compact. Since Y is Hausdorff we have due to
Prop. 1.43 that f(A) is closed.

d) Equip X = [0, 1] with the Euclidian topology and Y = [0, 1] with the indiscrete
topology. Then X is compact and Hausdorff and Y is compact but not Hausdorff.
Let f be the identity from X to Y . Then f is a bijection and continuous, since
f−1(∅) = ∅ and f−1(Y ) = X are both open in X. But f−1 is not continuous, since
e.g. f−1

−1
((1/3, 1/2)) is not open in Y , although (1/3, 1/2) is open in X.

Problem 3 (Q can be open).

a) Prove that Q is neither open nor closed in (R, dEucl).

b) Prove that d : R× R→ R+
0 with

d(x, y) := |x− y|+
∞∑
n=1

1

2n
min

{
1,

∣∣∣∣ 1

minj≤n |x− qj|
− 1

minj≤n |y − qj|

∣∣∣∣} ,
where {qj}j∈N is an enumeration of Q, is a metric on R. (Hint : By convention
1/0 =∞, |∞ −∞| = 0 and |∞ − a| = |a−∞| =∞ for all a ∈ R.)

c) Prove that {q} is open in (R, d) for all q ∈ Q.

d) Prove that Q is open in (R, d).
[2+3+4+1 Points]

Proof. a) Assume that Q is closed. Then Q = Q = R (where the last equality is
actually by definition of R, c.f. Theorem 1.36). But this is a contradiction, since f.x.√

2 ∈ R, but
√

2 6∈ Q.

Assume that Q is open. Remember that {B1/k(x) | x ∈ R, k ∈ N} is a base for
(R, dEucl), where Bε(x) = {y ∈ R | dEucl(x, y) < ε}. Thus Q =

⋃
j∈J B1/kj(xj).

This is a contradiction, since every ball Bε(x) in (R, dEucl) also contains irrational
numbers.
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b) First we have to show, that d is well-defined. Let x, y, z ∈ R. Then d(x, y) ≥ 0 and
d(x, y) ≤ |x− y|+

∑∞
n=1

1
2n

= |x− y|+ 1. Thus d is well-defined.

If x 6= y then d(x, y) ≥ |x − y| > 0, since | · | is positive definite and d(x, x) =
0 +

∑∞
n=1

1
2n

min{1, 0} = 0. Thus d is positive definite.

d is symmetric, since | · | is.

And finally d satisfies the triangle inequality:

d(x, y)

≤ |x− z|+ |z − y|+
∞∑
n=1

1

2n
min

{
1,

∣∣∣∣ 1

minj≤n |x− qj|
− 1

minj≤n |z − qj|

+
1

minj≤n |z − qj|
− 1

minj≤n |y − qj|

∣∣∣∣}
≤ d(x, z) + d(z, y)

c) Let q ∈ Q. Then q = qk for some k ∈ N. We will show that {qk} = B
(d)

2−k(qk), which

is open, since {B(d)
1/k(x) | x ∈ R, k ∈ N}, with B

(d)
ε (x) := {y ∈ R | d(x, y) < ε}, is (by

definition) a base for the by d induced topology of (R, d). Thus let y ∈ R, y 6= q.

• Case y = qr for some r ∈ N, r < k: Then

d(q, y) = |qk − qr|+
r−1∑
n=1

1

2n
min

{
1,

∣∣∣∣ 1

minj≤n |qk − qj|
− 1

minj≤n |qr − qj|

∣∣∣∣}

+
k−1∑
n=r

1

2n
min{1,∞}+

∞∑
n=k

1

2n
min{1, 0} ≥ 1

2k

• Case y = qr for some r ∈ N, r > k: Then

d(q, y) = |qk − qr|+
k−1∑
n=1

1

2n
min

{
1,

∣∣∣∣ 1

minj≤n |qk − qj|
− 1

minj≤n |qr − qj|

∣∣∣∣}

+
r−1∑
n=k

1

2n
min{1,∞}+

∞∑
n=r

1

2n
min{1, 0} ≥ 1

2k

• Case y 6∈ Q: Then

d(q, y) = |qk − y|+
k−1∑
n=1

1

2n
min

{
1,

∣∣∣∣ 1

minj≤n |qk − qj|
− 1

minj≤n |y − qj|

∣∣∣∣}
+
∞∑
n=k

1

2n
min{1,∞} ≥ 1

2k

Note, that this lower bound 2−k is independent of y. Thus d(q, y) ≥ 2−k and hence

y 6∈ B(d)

2−k(qk) for all y ∈ R. This proves the claim.

d) We have that Q =
⋃
j∈N{qj} is open as the (countable) union of open sets.
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Problem 4 (Homeomorphisms and completeness).

a) Find two metric spaces that are homeomorphic as topological spaces and such that
one is complete whereas the other is not.

Hint : There exist easy examples. In particular the examples given below will not be
accepted as an answer here.

Let d be the metric defined in Problem 3b) restricted to (R \Q)× (R \Q).

b) Prove that (R \Q, dEucl) and (R \Q, d) are homeomorphic.

c) Prove that (R \Q, dEucl) is not complete whereas (R \Q, d) is complete.
[2+4+4 Points]

Proof. a) (R, dEucl) is known to be a complete metric space. On the other hand
the metric space ((−π

2
, π
2
), dEucl) is not complete, since (−π

2
, π
2
) is not closed. But

arctan : R→ (−π
2
, π
2
) is bijective, continuous and its inverse is continuous, i.e. it is

a homeomorphism.

b) to come...

c) to come...

Deadline: May 18, 2016 10:00, for details see http://www.math.lmu.de/˜gottwald/16FA/.
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