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SOLUTION

Problem 1 (COMPACTNESS).

a)

b)

c)

Consider A := (0,1) as a subset of the metric space (R, dg,q). Find an open cover
of A which does not admit a finite subcover.

Consider B = [0,1] N Q as a subset of the metric space (Q,dpyq). Prove that B is
closed and bounded in Q and find an open cover of B which does not admit a finite
subcover.

Find a Hausdorff non-compact space, a finite compact non-Hausdorff space, and an
infinite compact non-Hausdorff space.
[2+4+4 Points]

Proof. a) Let U, := (2,1 — 1) for all n > 2. Let € A. Then there exists n € N

c)

n

s.t. 0 < % <z <1- % Thus z € U,. Hence |J,-,U, 2 A and thus {U,},>3
is an open cover of A. Assume there exists a finite subcover U,,,...,U,,. Then
M = max{ny,...ny} < ooand A Z Ujvzl Un, = (37,1 — 7). Contradiction!

The intervall [0,1] is closed in (R, Tguq). By Sheet 1, Problem 3a) B is closed in
(RNQ = Q,7g), where Ty is the relative topology of Q wrt. Tgyq. By Tutorial 5
Tq is equal to the topology induced by dpuajgxg- Thus B is closed in (Q, dpye)-

B is bounded, since B C By(0) ={y € Q| d(0,y) < 2 < co}.

Let U, = [(—1, \%—%)U(\%Jr%, 2)]NQ for all n > 2. These sets are open in (Q, dgyq)
by analog arguments as above, since (—1, \/Li - U (\/Li ++,2) is open in (R, Tiya)-
Hence | J,-, U, = [(—1, 2)\{\%}]0@ = (—1,2)NQ 2 B and thus {U, },>3 is an open
cover of B, since \/ié ¢ Q. Assume there exists a finite subcover U,,, ..., U,,. Then
M = max{ny,...ny} < oo and B € UL, Uy, = [(=1, 55 — ) U (55 + 77,21 N Q,
since [% -, \/Li + -] NQ # 0 (Q is dense in R). Contradiction!

o Hausdorff, non-compact: (R,dg.) is as a metric space Hausdorff and first
countable. If it were compact, it were sequentially compact (cf. lecture) and
every sequence had a convergent subsequence. But {n}, does not have a con-
vergent subsequence. Thus (R, dg,«) is non-compact.
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e finite, compact, non-Hausdorff: Let (X,T) be a finite topological space. Let
{Un}n be an open cover of X. Since X = {xy,...2n} is finite there exist
ni,...,ny s.t. x; € Uy, for i =1,..., N and thus Uf\il U,, 2 X. Thus every
finite space is compact, independent of the topology.

Equipping X with the indiscrete or the co-finite topology makes it non-Hausdorff.
e infinite, compact, non-Hausdorff: (X, Tingisc) with X infinite is compact and

Hausdorff, since every open covering is already finite.
O

Problem 2 (HOMEOMORPHISMS).

a)

b)

Let X,Y be topological spaces and f : X — Y a continuous function.

Prove that f(X) is compact if X is compact.

Let X :=[0,1) and Y := {(z,y) € R? | 22 + y* = 1} be equipped with the relative
topologies induced by the Euclidian topologies on R resp. R?.

Prove that
p: X =Y, 0 (cos(2m0),sin(270))

is a continuous bijection, but not a homeomorphism. Are X and Y homeomorphic?

Let X be a compact space and let Y be a Hausdorff space.

Prove or disprove: If f: X — Y is a continuous bijection then it is a homeomor-
phism.

Let X be a compact Hausdorff space and let Y be a compact space.

Prove or disprove: If f : X — Y is continuous bijection then it is a homeomorphism.
[24+-5+2+1 Points]

Proof.

a)

b)

Let {J;c; Ui be an open cover of f(X) C Y. Then f~'(U;) C X is open for all
i € I, since f is continuous. Furthermore | J,.; f~!(U;) is an open cover of X. [Let
z € X, then f(z) € U, Ui, ie. f(zx) € Uy, for some ig € I. Finally x € f~1(U;,)
and thus X C (J,; F7HU;).] Since X is compact there exists iy,...ixy € I s.t.
X C Ujvzl f7HU;;) and finally f(X) C Ujvzl U;. Thus f(X) is compact.

Hint: This implies that of & : X — Y is a homeomorphism, then X is compact iff
Y is compact. Indeed, if X is compact, then we have by a) and since ® is surjective,
that ®(X) =Y is compact. On the other hand, if Y is compact, then by a) since
®~1 is continuous and surjective, that ®~}(Y) = X is compact.

e o injective: Let 01,05 € X s.t. p(61) = ¢(02). Then cos(276;) = cos(276s) and
sin(2mwfh;) = sin(27wfy) and hence #; = 0y, since cos and sin are bijective on
[0,27) (cf. Analysis 1).

e o surjective: Let (x,y) € Y. Then we find an angle 2760 with § € X between
the positive z-axis and the radial line from 0 to (z,y) s.t. p(0) = (x,y).

e ¢ continuous: That ¢ is continuous as a function from X to R? follows from
Analysis 2. Therefore it is also continuous as ¢ : X — Y wrt. to the relative
topology of Y.



e o ! not continuous: We show, that ¢! is not continuous at x = (1,0). Set
e =+ and let 6 > 0 be given. Wlog 6 < 1. Set y := (1 — %, — ‘52—2 — %). Then

y> =1 and thus y € Y. In addition we have |z —y| = \% < §. But on the other
hand [~ (z) — ¢ (y)| = |¢ " (y)| > 2 > . Thus ¢! can not be continuous
at x.

e Assume there exists a homeomorphism ¢ : X — Y. By the hint in a) X is
compact iff Y is compact. But X is not closed and hence not compact in R,
whereas Y is closed and bounded and hence compact in R2. Contradiction!

c) We only have to show, that g :== f~' : ¥ — X is continuous. Let U C X be open.
Then A := X \ U is closed. g7*(U) is open iff Y\ g7} (U) = g7 (X \U) = g7 '(A) =
f(A) is closed. By a) and as f is surjective, we have that Y = f(X) is compact. By
Prop. 1.44 follows, that A C Y is compact as well. Since f is continuous we have
by a proof similar to a) that f(A) is compact. Since Y is Hausdorff we have due to
Prop. 1.43 that f(A) is closed.

d) Equip X = [0,1] with the Euclidian topology and Y = [0, 1] with the indiscrete
topology. Then X is compact and Hausdorff and Y is compact but not Hausdorff.
Let f be the identity from X to Y. Then f is a bijection and continuous, since
F7H0) =0 and f~(Y) = X are both open in X. But f~! is not continuous, since
e.g. f7171((1/3,1/2)) is not open in Y, although (1/3,1/2) is open in X.

]

Problem 3 (Q CAN BE OPEN).

a) Prove that Q is neither open nor closed in (R, dgyq)-

b) Prove that d : R x R — R with

1 1

min;<, |z — ¢j| a min;<, [y — ¢j

b

where {g;},jen is an enumeration of Q, is a metric on R. (Hint: By convention
1/0 = 00, |00 — co| = 0 and |oo — a| = |a — co| = oo for all a € R.)

— 1
d(z,y) = |z —y +22—nmin{1,‘
n=1

c) Prove that {¢} is open in (R, d) for all ¢ € Q.

d) Prove that Q is open in (R, d).
[24+-3+4+1 Points]

Proof. a) Assume that Q is closed. Then Q = Q = R (where the last equality is
actually by definition of R, c.f. Theorem 1.36). But this is a contradiction, since f.x.

V2 eR, but v2 € Q.

Assume that Q is open. Remember that {B;/;(x) | v € R,k € N} is a base for
(R, dpua), where B.(z) = {y € R | dpua(z,y) < }. Thus Q = Uj;c; Biyx, (2;)-
This is a contradiction, since every ball B.(x) in (R, dgyq) also contains irrational
numbers.



b) First we have to show, that d is well-defined. Let x,y, z € R. Then d(x,y) > 0 and
d(z,y) < |z —y|+ Zn 1 5= = |z — y| + 1. Thus d is well-defined.

If  # y then d(x,y) > |z —y| > 0, since | - | is positive definite and d(z,z) =
0+ >, 5= min{1,0} = 0. Thus d is positive definite.

d is symmetric, since | - | is.

And finally d satisfies the triangle inequality:
d(z,y)

§|x—z|+|z—y\+z2inmin{1, . . - :
e minj<, [z — ¢;|  minj<, [z — gj]
1 1
minj<n [z — ¢;|  minj<, [y — g }
<d(z,z)+d(z,vy)

+

c) Let ¢ € Q. Then q = qi, for some k € N. We will show that {g.} = B, B, (qx), which
is open, since {Bl/k:( z) |z € R,k € N}, with B (2) == {y € R | d(z,y) < €}, is (by
definition) a base for the by d induced topology of (R, d). Thus let y € R,y # q.

e Case y = g, for some r € N, r < k: Then

r—1
1 1 1
d(q,y) = lax — ¢ + —min{l,‘ . - — }
; 2" minj<, |qx — ¢;|  minj<, |g- — g
k—1 1 o) 1 1
+ nz 5 min{1, 00} + 2 5 min{1,0} > o

e Case y = g, for some r € N, r > k: Then

G 1 1
d(q,y)=|qk—qr|+22—nmin{1,‘ . o
n=1

min <y, |Qk —dq; min;<n |61r - Qj|

}

—i—Z—mm{l oo}—i—Z—mln{l 0} > —

e Case y ¢ Q: Then

1 1
e —y| + —mm{ ‘ - - }
( ‘ ’ Z min;<,, \qk — qj| min;<n ‘Z/ —dj
+ % 2—nm1n{1,oo} > ok

Note, that this lower bound 27% is independent of y. Thus d(q,y) > 27* and hence
y & B2 k(qk) for all y € R. This proves the claim.

d) We have that Q = (J;cy{g;} is open as the (countable) union of open sets.



Problem 4 (HOMEOMORPHISMS AND COMPLETENESS).

a) Find two metric spaces that are homeomorphic as topological spaces and such that
one is complete whereas the other is not.

Hint: There exist easy examples. In particular the examples given below will not be
accepted as an answer here.

Let d be the metric defined in Problem 3b) restricted to (R\ Q) x (R\ Q).
b) Prove that (R\ Q, dgu) and (R\ Q,d) are homeomorphic.

¢) Prove that (R\ Q, dgyq) is not complete whereas (R \ Q, d) is complete.
[2+4+4 Points]

Proof. a) (R,dgu) is known to be a complete metric space. On the other hand

the metric space ((—7, 5), dpua) is not complete, since (-7, 7) is not closed. But
arctan : R — (=%, 7) is bijective, continuous and its inverse is continuous, i.e. it is

a homeomorphism.
b) to come...

¢) to come...
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