

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 May 9, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 4

Problem 1 (COMPACTNESS).

- a) Consider A := (0, 1) as a subset of the metric space (\mathbb{R}, d_{Eucl}) . Find an open cover of A which does not admit a finite subcover.
- b) Consider $B := [0,1] \cap \mathbb{Q}$ as a subset of the metric space (\mathbb{Q}, d_{Eucl}) . Prove that B is closed and bounded in \mathbb{Q} and find an open cover of B which does not admit a finite subcover.
- c) Find a Hausdorff non-compact space, a finite compact non-Hausdorff space, and an infinite compact non-Hausdorff space.

[2+4+4 Points]

Problem 2 (HOMEOMORPHISMS).

- a) Let X, Y be topological spaces and $f: X \to Y$ a continuous function. Prove that f(X) is compact if X is compact.
- b) Let X := [0, 1) and $Y := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ be equipped with the relative topologies induced by the Euclidian topologies on \mathbb{R} resp. \mathbb{R}^2 . Prove that

 $\varphi: X \to Y, \theta \mapsto (\cos(2\pi\theta), \sin(2\pi\theta))$

is a continuous bijection, but not a homeomorphism. Are X and Y homeomorphic?

- c) Let X be a compact space and let Y be a Hausdorff space. Prove or disprove: If $f: X \to Y$ is a continuous bijection then it is a homeomorphism.
- d) Let X be a compact Hausdorff space and let Y be a compact space. Prove or disprove: If $f: X \to Y$ is continuous bijection then it is a homeomorphism. [2+2+3+3 Points]

Problem 3 (\mathbb{Q} CAN BE OPEN).

- a) Prove that \mathbb{Q} is neither open nor closed in (\mathbb{R}, d_{Eucl}) .
- b) Prove that $d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_0^+$ with

$$d(x,y) := |x-y| + \sum_{n=1}^{\infty} \frac{1}{2^n} \min\left\{1, \left|\frac{1}{\min_{j \le n} |x-q_j|} - \frac{1}{\min_{j \le n} |y-q_j|}\right|\right\},\$$

where $\{q_j\}_{j\in\mathbb{N}}$ is an enumeration of \mathbb{Q} , is a metric on \mathbb{R} . (*Hint*: By convention $1/0 = \infty$, $|\infty - \infty| = 0$ and $|\infty - a| = |a - \infty| = \infty$ for all $a \in \mathbb{R}$.)

- c) Prove that $\{q\}$ is open in (\mathbb{R}, d) for all $q \in \mathbb{Q}$.
- d) Prove that \mathbb{Q} is open in (\mathbb{R}, d) .

[3+4+2+1 Points]

Problem 4 (HOMEOMORPHISMS AND COMPLETENESS).

a) Find two metric spaces that are homeomorphic as topological spaces and such that one is complete whereas the other is not.

Hint: There exist easy examples. In particular the examples given below will not be accepted as an answer here.

Let d be the metric defined in Problem 3b) restricted to $(\mathbb{R} \setminus \mathbb{Q}) \times (\mathbb{R} \setminus \mathbb{Q})$.

- b) Prove that $(\mathbb{R} \setminus \mathbb{Q}, d_{Eucl})$ and $(\mathbb{R} \setminus \mathbb{Q}, d)$ are homeomorphic.
- c) Prove that $(\mathbb{R} \setminus \mathbb{Q}, d_{Eucl})$ is not complete whereas $(\mathbb{R} \setminus \mathbb{Q}, d)$ is complete.

[2+4+4 Points]

Deadline: May 18, 2016 10:00, for details see http://www.math.lmu.de/~gottwald/16FA/.