

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 May 2, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 3

Problem 1 (HAUSDORFF SPACES).

- a) Let (X, \mathcal{T}) be a Hausdorff space and $Y \subseteq X$. Prove that (Y, \mathcal{T}_Y) is a Hausdorff space, where \mathcal{T}_Y is the relative topology of Y wrt. X.
- b) Let $X := \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$ and $C_r := \{(x, y) \in X \mid r < x^2 + y^2 \leq 1\}$ for $r \in [0, 1]$. Prove that $\mathcal{B} := \{C_r \mid r \in [0, 1]\} \cup \{X\}$ is a topology on X that is not countable and not Hausdorff.
- c) Let (X, \mathcal{T}) be a topological space. Prove or disprove: If all singletons $\{x\}$ with $x \in X$ are closed, then (X, \mathcal{T}) is Hausdorff.

[2+5+3 Points]

Problem 2 (SECOND COUNTABLE, SEPARABLE).

- a) Prove that every second countable topological space is separable.
- b) Prove that a metric space is second countable *iff* it is separable.
- c) Prove that a space equipped with the co-finite topology is separable.

[3+4+3 Points]

Problem 3 (PRODUCT TOPOLOGY). Let X_1, X_2 , and Z be non-empty topological spaces, and let $X \coloneqq X_1 \times X_2$ be the product space equipped with the product topology. Let $P_j : X \to X_j, j = 1, 2$ be the projections onto the *j*-th component, i.e. $P_j x = x_j$ for all $x = (x_1, x_2) \in X$.

- a) Prove that P_1 and P_2 are continuous, open, but not necessarily closed maps (i.e. the image of closed sets are *not* necessarily closed).
- b) Prove that the product topology on X is the *weakest* topology such that P_1 and P_2 are continuous.
- c) Prove that a function $f: Z \to X$ is continuous *iff* each $P_j \circ f: Z \to X_j$, j = 1, 2 is continuous.
- d) Prove that X is a Hausdorff space iff both X_1 and X_2 are Hausdorff.
- e) Prove that Z is a Hausdorff space *iff* the "diagonal" $\Delta := \{(z, z) \mid z \in Z\}$ is closed in $Z \times Z$ wrt. the product topology.

[2+2+2+2+2 Points]

Problem 4 (INITIAL TOPOLOGY). Let \mathcal{F} be a family of functions from a set X to a topological space (Y, \mathcal{T}) . The \mathcal{F} -initial topology \mathcal{T}_i on X is the weakest topology such that all functions in \mathcal{F} are continuous.

- a) Prove that the family of all finite intersections of sets of the form $f^{-1}(A)$, where $f \in \mathcal{F}$ and $A \in \mathcal{T}_Y$, is a base for \mathcal{T}_i .
- b) Let (Z, \mathcal{T}_Z) be a topological space and $g: Z \to X$. Prove that g is continuous *iff* for all $f \in \mathcal{F}$ the composition $f \circ g: Z \to Y$ is continuous. (Here, X is equipped with the topology \mathcal{T}_i and Y with \mathcal{T} , as above).
- c) Let $\{x_n\}_n$ be a sequence in X and $x \in X$. Prove that $x_n \to x$ for $n \to \infty$ in (X, \mathcal{T}_i) iff for all $f \in \mathcal{F}: f(x_n) \to f(x)$ for $n \to \infty$ in (Y, \mathcal{T}) .

Application 1: Let (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) be topological spaces and let $P_X : X \times Y \to X$ and $P_Y : X \times Y \to Y$ be the projections on the respective components.

d) Prove that the product topology on $X \times Y$ is the \mathcal{F} -initial topology with $\mathcal{F} = \{P_X, P_Y\}.$

Hint: You have to generalize the above definition of the \mathcal{F} -initial topology to different target spaces of the functions in \mathcal{F} in the obvious way.

Application 2: The \mathcal{F} -initial topology on C([0,1]) with respect to $\mathcal{F} := \{E_x \mid x \in [0,1]\}$, where $E_x : C([0,1]) \to \mathbb{R}, f \mapsto E_x(f) := f(x)$, is called the *topology of pointwise conver*gence.

e) Let $\{f_n\}_n$ be a sequence in C([0,1]) and $f \in C([0,1])$. Prove that $f_n \to f$ for $n \to \infty$ in the topology of pointwise convergence *iff* for all $x \in [0,1]$: $f_n(x) \to f(x)$ for $n \to \infty$ in the Euclidean topology.

[2+2+2+2+2 Points]

Deadline: May 9, 2016. For details see http://www.math.lmu.de/~gottwald/16FA/.