

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 Apr 25, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 2

REMAINING SOLUTIONS

Problem 1 (CLOSURE, INTERIOR, BOUNDARY W.R.T. COMPLEMENT, INCLUSION, UNI-ON, AND INTERSECTION). Let (X, \mathcal{T}) be a topological space and $E, F \subseteq X$.

f) Prove that $\partial(E \cup F) \subset \partial E \cup \partial F$ and find an example of strict inclusion.

Proof. f) Let $x \in \partial(E \cup F)$. Assume $x \notin \partial E \cup \partial F$. Then there exists nbhds U and V of x s.t. $U \cap E = \emptyset \lor U \cap (X \setminus E) = \emptyset$ and $V \cap E = \emptyset \lor V \cap (X \setminus E) = \emptyset$. But then $W \coloneqq U \cap V$ is a nbhd of x with $W \subseteq U$, $W \subseteq V$. Thus $W \cap E = \emptyset \lor W \cap (X \setminus E) = \emptyset$ and $W \cap E = \emptyset \lor W \cap (X \setminus E) = \emptyset$. If $W \cap E = \emptyset$ and $W \cap F = \emptyset$ then $W \cap (E \cup F) = (W \cap E) \cup (W \cap F) = \emptyset$ in contradiction to $x \in \partial(E \cup F)$. Otherwise (at least) $W \cap (X \setminus E) = \emptyset$ or $W \cap (X \setminus F) = \emptyset$ and thus $W \cap (X \setminus (E \cup F)) = W \cap (X \setminus E) \cap (X \setminus F) = \emptyset$ in contradiction to $x \in \partial(E \cup F)$. An example for strict inclusion in $(\mathbb{R}, \mathcal{T}_{Eucl})$ is $E \coloneqq [0, 1]$ and $F \coloneqq [1, 2]$. Then $\partial E = \{0, 1\}$ and $\partial F = \{1, 2\}$ and thus $\partial E \cup \partial F = \{0, 1, 2\}$. On the other side $\partial(E \cup F) = \{0, 1\}$.

Deadline: May 2, 2016, for details see http://www.math.lmu.de/~gottwald/16FA/.