

LIANS-SITÄT | EN | MATHEMATISCHES INSTITUT

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 Apr 25, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 2

Remark. The purpose of this excercise sheet is to get used to topological notions. Do not forget writing up solutions *carefully* and *in detail*. What did you learn from these exercises?

Problem 1 (CLOSURE, INTERIOR, BOUNDARY W.R.T. COMPLEMENT, INCLUSION, UNI-ON, AND INTERSECTION). Let (X, \mathcal{T}) be a topological space and $E, F \subseteq X$.

- a) Prove that $\partial E = \partial (X \setminus E)$.
- b) Prove that $\mathring{E} = \mathring{E}$.
- c) Prove that $\overline{E \cup F} = \overline{E} \cup \overline{F}$.
- d) Prove that $(E \cup F) \supset \mathring{E} \cup \mathring{F}$ and find an example of strict inclusion.
- e) Prove that $(E \cap F) = \mathring{E} \cap \mathring{F}$.
- f) Prove that $\partial(E \cup F) \subset \partial E \cup \partial F$ and find an example of strict inclusion.
- g) Find examples for $\partial(E \cap F) \subsetneq \partial E \cap \partial F$ and for $\partial(E \cap F) \supsetneq \partial E \cap \partial F$. [1+1+1+2+1+2+2 Points]

Problem 2 (BASE OF A TOPOLOGY). Let (X, \mathcal{T}) be a topological space. A family $\mathcal{B} \subseteq \mathcal{T}$ such that any $U \in \mathcal{T}$ is the union of sets in \mathcal{B} is called a *base* for the topology \mathcal{T} .

- a) Prove that every topology has a base.
- b) Prove that $\mathcal{B} \subseteq \mathcal{T}$ is a base for \mathcal{T} iff for all $x \in X$ the family $\mathcal{B}_x := \{B \in \mathcal{B} | x \in B\}$ is a neighbourhood basis for x.
- c) Prove that $\mathcal{B} \subseteq \mathcal{P}(X)$ is the base of a topology of X iff \mathcal{B} has the following properties:
 - i) For all $x \in X$ there exists $B \in \mathcal{B}$ with $x \in B$.
 - ii) Let $x \in X$ and $B_1, B_2 \in \mathcal{B}$. If $x \in B_1 \cap B_2$ then there exists $B_3 \in \mathcal{B}$ s.t. $x \in B_3 \subseteq B_1 \cap B_2$.
- d) Prove that $\mathcal{B} := \{ [a, b) \mid a, b \in \mathbb{R}, a \leq b \}$ is the base for a topology in \mathbb{R} .

[1+3+3+3 Points]

Problem 3 (CHARACTERISATION OF CLOSED SETS). Let (X, \mathcal{T}) be a topological space and $E \subseteq X$. Prove that the following properties are equivalent:

- i) E is closed.
- ii) $\overline{E} = E$.
- iii) $\partial E \subseteq E$.
- iv) $E = \{ \text{adherent points of } E \}.$
- v) For all $x \in X$, if every neighbourhood of x intersects E, then $x \in E$.
- vi) {limit points of E} $\subseteq E$.

[10 Points]

Problem 4 (SEQUENTIAL CONTINUITY $\neq \Rightarrow$ CONTINUITY). Let X be a set and let $\mathcal{T}_1 := \{\emptyset\} \cup \{A \subseteq X \mid X \setminus A \text{ is at most countable}\}.$

a) Prove that (X, \mathcal{T}_1) is a topological space.

Consider the topological spaces $(X, \mathcal{T}_X) \coloneqq (\mathbb{R}, \mathcal{T}_1)$ and $(Y, \mathcal{T}_Y) \coloneqq (\mathbb{R}, \mathcal{T}_{Eucl})$.

- b) Prove that every map $f: X \to Y$ is sequentially continuous.
- c) Prove that $g: X \to Y, x \mapsto x$, is not continuous.

[2+6+2 Points]

Deadline: May 2, 2016, for details see http://www.math.lmu.de/~gottwald/16FA/.