

IANS-ITÄT || N | MATHEMATISCHES INSTITUT

PROF. T. Ø. SØRENSEN PHD A. Groh, S. Gottwald Summer term 2016 Apr 18, 2016

FUNCTIONAL ANALYSIS EXCERCISE SHEET 1

Remark. The purpose of this excercise sheet is to get used to topological notions. Do not forget writing up solutions *carefully* and *in detail*. What did you learn from these exercises?

Problem 1. (BASIC FACTS ABOUT CLOSURE, INTERIOR, AND BOUNDARY.) Let (X, \mathcal{T}) be a topological space and $E \subseteq X$. Use the definitions given in class of closed sets in X, closure \overline{E} , interior \mathring{E} , and boundary ∂E of E.

- a) Prove that $X \setminus \mathring{E} = \overline{X \setminus E}$.
- b) Prove that $\partial E = \overline{E} \setminus \mathring{E} = \overline{E} \cap (\overline{X \setminus E}).$
- c) Prove that $\overline{E} = \mathring{E} \sqcup \partial E$ (\sqcup meaning disjoint union).

[3+6+1 Points]

Problem 2. (CO-FINITE TOPOLOGY.)

- a) Let X be a set and \mathcal{T} the family of subsets U of X such that $X \setminus U$ is finite, together with the empty set \emptyset .
 - i) Prove that (X, \mathcal{T}) is a topologial space.
 - ii) Let $E \subseteq X$. Find the closure \overline{E} of E in the topological space (X, \mathcal{T}) .
- b) Consider $X = \mathbb{Z}$ with \mathcal{T} as defined above.
 - i) Prove that the sequence $1, 2, 3, \ldots$ is convergent in $(\mathbb{Z}, \mathcal{T})$ to *each* point of \mathbb{Z} .
 - ii) Find all convergent sequences in $(\mathbb{Z}, \mathcal{T})$.

[2+2+2+4 Points]

Problem 3. (RELATIVE TOPOLOGY) Let (X, \mathcal{T}) be a topological space, $S \subseteq X$, and $\mathcal{T}_S := \{O \cap S \mid O \in \mathcal{T}\}$ the *relative topology* on S induced by \mathcal{T} .

- a) Let $E \subseteq S$. Prove that E is \mathcal{T}_S -closed (i.e. *relatively closed*) if and only if $E = S \cap C$ for some \mathcal{T} -closed set $C \subseteq X$.
- b) Let $E \subseteq S$. Prove that the closure of E with respect to \mathcal{T}_S (i.e. the *relative closure* of E in S) is $\overline{E} \cap S$, where \overline{E} denotes the closure of E w.r.t. \mathcal{T} .

[5+5 Points]

Problem 4. (RELATIVE CLOSURE/CONVERGENCE.) Let (X, \mathcal{T}) be a topological space, $S \subseteq X$, and (S, \mathcal{T}_S) be the topological space consisting of the subset S equipped with the relative topology \mathcal{T}_S induced by \mathcal{T} .

- a) Let $A \subseteq X$. Prove that the \mathcal{T}_S -closure of $A \cap S$ in S is contained in $\overline{A} \cap S$, where \overline{A} denotes the \mathcal{T} -closure of A in X.
- b) Let $\{x_n\}_n \subseteq S$ be a sequence and $x \in S$. Prove that $\{x_n\}_n$ is convergent to x in (S, \mathcal{T}_S) if and only if it is convergent to x in (X, \mathcal{T})

[5+5 Points]

For general informations please visit http://www.math.lmu.de/~gottwald/16FA/