

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Winter term 2021

Prof. D. Kotschick S. Gritschacher

Mathematical Gauge Theory II

Sheet 11

Exercise 1. (Seiberg-Witten equations on the flat torus) Consider $T^4 = \mathbb{R}^4 / \mathbb{Z}^4$ with a flat metric g_0 induced by the scalar product of \mathbb{R}^4 . Prove the following statements.

- (a) Any solution (A, Φ) to the unperturbed Seiberg-Witten equations on (T^4, q_0) is reducible, i.e. Φ vanishes identically. For a generic flat metric \hat{A} is flat.
- (b) If the expected dimension of the moduli space for a Spin^c -structure \mathfrak{s} on T^4 is non-negative, and the moduli space is non-empty, then the Spin^c-structure is the unique one induced by any spin structure, and the moduli space is a copy of T^4 .

Exercise 2. (Small perturbations of the Seiberg-Witten equations on T^4) Consider $T^4 = \mathbb{R}^4 / \mathbb{Z}^4$ with its flat Riemannian metric g_0 induced by the scalar product of \mathbb{R}^4 . Let $\omega = dx_1 \wedge dx_2 + dx_3 \wedge dx_4$. Note that this is a parallel g_0 -self-dual 2-form.

For a Spin^c-structure $\mathfrak{s} = (\gamma, V)$ on T^4 consider the perturbed Seiberg-Witten equations

$$\begin{split} D^+_A \Phi &= 0 \\ F^+_{\hat{A}} &= \sigma(\Phi, \Phi) + i \varepsilon \omega \ , \end{split}$$

where $0 < \varepsilon << 1$ is real and positive, and very small. Assume that the expected dimension of the moduli space of solutions is non-negative.

- (a) Prove that if there is a solution to the equations, then $\langle c_1^2(L_{\mathfrak{s}}), [T^4] \rangle = 0$, equivalently the expected dimension is zero.
- (b) For the unique Spin^c-structure with $c_1(L_{\mathfrak{s}}) = 0$ prove that there is precisely one solution up to gauge equivalence for every $\varepsilon \neq 0$.

Exercise 3. Consider \mathbb{CP}^2 endowed with the Fubini-Study metric g_{FS} with associated fundamental form ω_{FS} , and the perturbed Seiberg-Witten equations

$$D_A^+ \Phi = 0$$

$$F_{\hat{A}}^+ = \sigma(\Phi, \Phi) + i\varepsilon\omega_{FS} .$$

Show that for every Spin^c-structure there is a unique ε such that the equations have precisely one solution, which is reducible. What is the relation between this value of ε and the Spin^c-structure?

(please turn)

Exercise 4. (Unperturbed SW equation on $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$) Consider $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$ endowed with a metric with positive scalar curvature.

- (a) Classify Spin^c-structures on $\mathbb{C}P^2 \# \overline{\mathbb{C}P}^2$ in terms of the cohomology.
- (b) Compute the expected dimension of the moduli space of solutions to the unperturbed Seiberg-Witten equation for any Spin^c-structure.
- (c) Prove that for every Spin^c-structure the unperturbed Seiberg-Witten equation has no solution.

You can hand in solutions in the lecture on Thursday, 3 February 2022.