

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Winter term 2021

Prof. D. Kotschick

S. Gritschacher

Mathematical Gauge Theory II

Sheet 8

Exercise 1. (Harmonic maps) Let (X,g) be a compact oriented smooth Riemannian manifold and let $u: X \to S^1$ be a smooth map. Show that u is harmonic, that is $d^*(u d u^{-1}) = 0$, if and only if u is a critical point of the energy functional

$$\mathcal{E}(u) := \frac{1}{2} \int_X \|\mathrm{d}\, u\|^2 \, \mathrm{d}\, vol_g \, .$$

Exercise 2. Show that the maps

$$\mathfrak{e} \colon \mathcal{G}^{\perp} \times \mathcal{S} \longrightarrow \mathcal{A}$$
$$(e^{if}, (A_0 + a, \Phi)) \longmapsto (A_0 + a - i \,\mathrm{d}\, f, e^{if}\Phi)$$

and

$$\mathfrak{e}^{-1} \colon \mathcal{A} \longrightarrow \mathcal{G}^{\perp} \times \mathcal{S}$$
$$(A_0 + b, \Psi) \longmapsto (e^{-G(\mathrm{d}^* b)}, A_0 + b - \mathrm{d}(G(\mathrm{d}^* b)), e^{G(\mathrm{d}^* b)}\Psi))$$

are inverse to each other.

Exercise 3. Let (H,g) be a real 2*n*-dimensional Euclidean inner product space, and $J: H \to H$ a complex structure compatible with the inner product, that is, an orthogonal transformation satisfying $J^2 = -id$. Equip $V := H \otimes_{\mathbb{R}} \mathbb{C}$ with the Hermitian inner product

$$h(v \otimes \lambda, w \otimes \mu) := \lambda \bar{\mu} g(v, w)$$

for $v, w \in H$ and $\lambda, \mu \in \mathbb{C}$.

- 1. Show that there is an orthogonal decomposition $V = V^{1,0} \oplus V^{0,1}$ into the $\pm i$ -eigenspaces of the \mathbb{C} -linear extension of J. Conclude that there is an induced decomposition $\bigwedge^k V = \bigoplus_{p+q=k} \bigwedge^{p,q} V$ where $\bigwedge^{p,q} V := \bigwedge^p V^{1,0} \otimes \bigwedge^q V^{0,1}$.
- 2. Show that the \mathbb{C} -linear extension of the Hodge star $*: \bigwedge^k V \to \bigwedge^{2n-k} V$ satisfies $\alpha \wedge *\bar{\beta} = h(\alpha, \beta)$ vol and conclude that $* \max \bigwedge^{p,q} V$ to $\bigwedge^{n-q,n-p} V$.

(please turn)

Exercise 4. Let H be a real 4-dimensional Euclidean inner product space, and $J: H \to H$ a complex structure compatible with the inner product. Let $V = H \otimes_{\mathbb{R}} \mathbb{C}$ and for $v \in V$ let $v^{1,0} := (v - iJ(v))/2$ and $v^{0,1} := (v + iJ(v))/2$ denote the projection of v to $V^{1,0}$ and $V^{0,1}$, respectively. Set

$$V_+ := V^{0,0} \oplus V^{0,2}, \qquad V_- := V^{0,1}.$$

1. Show that $\bigwedge^* V^{0,1} = V_+ \oplus V_-$ becomes a Clifford module by defining Clifford multiplication on $(\alpha, \beta) \in V_+$ by

$$\gamma(v)(\alpha,\beta) = \sqrt{2}(v^{0,1} \wedge \alpha - *(v^{1,0} \wedge *\beta)),$$

and on $\psi \in V_{-}$ by

$$\gamma(v)\psi = \sqrt{2}(-\ast(v^{1,0}\wedge\ast\psi), v^{0,1}\wedge\psi) \,.$$

[It may be helpful to recall that $*^2 = (-1)^{k(n-k)}$ on $\bigwedge^k V$ where $n = \dim_{\mathbb{C}}(V)$.]

2. Let X be a smooth oriented Riemannian 4-manifold equipped with a compatible almost complex structure $J: TX \to TX$, that is, J is a fibrewise complex structure compatible with the metric. Conclude from (1) that X has a canonical $Spin^c$ -structure, and determine its characteristic line bundle.

You can hand in solutions in the lecture on Thursday, 13 January 2021.