

Winter term 2021
Prof. D. Kotschick
S. Gritschacher

Mathematical Gauge Theory II

Sheet 5

Exercise 1. (Invariants of 4-manifolds) Let M and N be two closed simply connected oriented smooth 4-manifolds.

1. Prove that M and N are homeomorphic if and only if the the following invariants agree:

- Euler characteristic χ
- signature σ
- parity (even or odd) of the intersection form.

2. Identify $M \# \overline{\mathbb{C P}}^{2}$ up to homeomorphism.
3. Assume $\sigma(M)=-\sigma(N)$ and even intersection forms Q_{M}, Q_{N}. Find a 4-manifold homeomorphic to $M \# N$.

Exercise 2. (Complete intersections) Let $d=\left(d_{1}, d_{2}, \ldots, d_{r}\right)$ be an r-tuple of natural numbers and consider the intersection of r smooth hypersurfaces $X_{d_{i}}$ of degree d_{i} in $\mathbb{C P}^{r+2}$:

$$
S_{d}=X_{d_{1}} \cap X_{d_{2}} \ldots \cap X_{d_{r}} .
$$

We assume that for all $k=2, \ldots, r$ the hypersurface $X_{d_{k}}$ intersects $X_{d_{1}} \cap \ldots \cap X_{d_{k-1}}$ transversely. Then S_{d} is a smooth complex surface, called a complete intersection of multidegree d.

1. Suppose submanifolds M and N of a manifold W intersect transversely. Show that the normal bundles in W are related by $\nu(M \cap N)=\left.\left.\nu(M)\right|_{M \cap N} \oplus \nu(N)\right|_{M \cap N}$.
2. Calculate the Chern classes $c_{1}\left(S_{d}\right)$ and $c_{2}\left(S_{d}\right)$.
3. Determine those multidegrees d for which S_{d} is a $K 3$ surface.

Exercise 3. (Chern classes of tensor products)

1. Let V, W be complex vector bundles of rank 2 . Use the splitting principle to prove that

$$
\begin{aligned}
& c_{1}(V \otimes W)=2\left(c_{1}(V)+c_{1}(W)\right) \\
& c_{2}(V \otimes W)=2\left(c_{2}(V)+c_{2}(W)\right)+c_{1}^{2}(V)+c_{1}^{2}(W)+3 c_{1}(V) c_{1}(W)
\end{aligned}
$$

2. Let V_{+}be the spinor bundle of a $\operatorname{Spin}^{c}{ }^{\text {-structure over an oriented Riemannian 4-manifold. Use }}$ an isomorphism induced from Clifford multiplication to prove that

$$
p_{1}\left(\Lambda_{+}^{2}\right)=c_{1}^{2}\left(V_{+}\right)-4 c_{2}\left(V_{+}\right)
$$

Exercise 4. (S^{2}-bundles over Σ_{g}) Let Σ_{g} denote the surface of genus g.

1. Suppose $D^{2} \subset \Sigma_{g}$ is a small disk around a point. Show that $\Sigma_{g} \backslash D^{2}$ is homotopy equivalent to a 1-point union $\bigvee_{i=1}^{2 g} S_{i}^{1}$ of $2 g$ circles.
2. Prove that for every $g \geq 0$ there are at most two orientable S^{2}-bundles over Σ_{g} up to diffeomorphism.

You can hand in solutions in the lecture on Thursday, 25 November 2021.

