

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2021

Prof. D. Kotschick S. Gritschacher

Mathematical Gauge Theory II

Sheet 5

Exercise 1. (Invariants of 4-manifolds) Let M and N be two closed simply connected oriented smooth 4-manifolds.

- 1. Prove that M and N are homeomorphic if and only if the the following invariants agree:
 - Euler characteristic χ
 - signature σ
 - parity (even or odd) of the intersection form.
- 2. Identify $M \# \overline{\mathbb{CP}}^2$ up to homeomorphism.
- 3. Assume $\sigma(M) = -\sigma(N)$ and even intersection forms Q_M , Q_N . Find a 4-manifold homeomorphic to M # N.

Exercise 2. (Complete intersections) Let $d = (d_1, d_2, \ldots, d_r)$ be an *r*-tuple of natural numbers and consider the intersection of *r* smooth hypersurfaces X_{d_i} of degree d_i in \mathbb{CP}^{r+2} :

$$S_d = X_{d_1} \cap X_{d_2} \dots \cap X_{d_r}.$$

We assume that for all k = 2, ..., r the hypersurface X_{d_k} intersects $X_{d_1} \cap ... \cap X_{d_{k-1}}$ transversely. Then S_d is a smooth complex surface, called a *complete intersection of multidegree d*.

- 1. Suppose submanifolds M and N of a manifold W intersect transversely. Show that the normal bundles in W are related by $\nu(M \cap N) = \nu(M)|_{M \cap N} \oplus \nu(N)|_{M \cap N}$.
- 2. Calculate the Chern classes $c_1(S_d)$ and $c_2(S_d)$.
- 3. Determine those multidegrees d for which S_d is a K3 surface.

(please turn)

Exercise 3. (Chern classes of tensor products)

1. Let V, W be complex vector bundles of rank 2. Use the splitting principle to prove that

$$c_1(V \otimes W) = 2 (c_1(V) + c_1(W))$$

$$c_2(V \otimes W) = 2 (c_2(V) + c_2(W)) + c_1^2(V) + c_1^2(W) + 3c_1(V)c_1(W).$$

2. Let V_+ be the spinor bundle of a Spin^c-structure over an oriented Riemannian 4-manifold. Use an isomorphism induced from Clifford multiplication to prove that

$$p_1(\Lambda_+^2) = c_1^2(V_+) - 4c_2(V_+)$$

Exercise 4. $(S^2$ -bundles over Σ_g) Let Σ_g denote the surface of genus g.

- 1. Suppose $D^2 \subset \Sigma_g$ is a small disk around a point. Show that $\Sigma_g \setminus D^2$ is homotopy equivalent to a 1-point union $\bigvee_{i=1}^{2g} S_i^1$ of 2g circles.
- 2. Prove that for every $g \ge 0$ there are at most two orientable S²-bundles over Σ_g up to diffeomorphism.

You can hand in solutions in the lecture on Thursday, 25 November 2021.