

Winter term 2021
Prof. D. Kotschick
S. Gritschacher

Mathematical Gauge Theory II

Sheet 4

Exercise 1. (Intersection form of a product of surfaces) Let Σ_{g}, Σ_{h} denote smooth closed oriented surfaces of genus $g, h \geq 0$.

1. For every $n \geq 0$ determine a basis of $H_{n}\left(\Sigma_{g} \times \Sigma_{h} ; \mathbb{Z}\right)$, for example, by using the standard basis of $H_{1}\left(\Sigma_{g} ; \mathbb{Z}\right)$ represented by $2 g$ embedded circles.
2. Calculate the Euler characteristic $\chi\left(\Sigma_{g} \times \Sigma_{h}\right)$ and compare with the general result that the Euler characteristic is multiplicative, that is, $\chi(M \times N)=\chi(M) \chi(N)$ for compact manifolds M, N.
3. Determine the intersection form of $\Sigma_{g} \times \Sigma_{h}$.

Exercise 2. (Embedded surfaces in $\mathbb{C P}^{2}$) A projective line is a linear $\mathbb{C P}^{1}$ in $\mathbb{C P}^{2}$ (coming from a linear subspace $\mathbb{C}^{2} \subset \mathbb{C}^{3}$). Let $d \geq 0$ be a natural number.

1. We call d projective lines in $\mathbb{C P}^{2}$ in general position if all intersections between them are transverse and if at most two projective lines intersect in a given point p for all $p \in \mathbb{C P}^{2}$. Prove that there exists d projective lines in $\mathbb{C P}^{2}$ in general position for all $d \geq 0$.
2. Determine a smooth surface representing the class $d\left[\mathbb{C P}^{1}\right] \in H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$. What is its genus?

Exercise 3. (Embedded surfaces in $S^{2} \times S^{2}$) Let $M=S^{2} \times S^{2}$ and consider the homology classes $a, b \in H_{2}(M ; \mathbb{Z})$ defined by

$$
a=\left[S^{2} \times\{p\}\right], \quad b=\left[\{q\} \times S^{2}\right],
$$

where $p, q \in S^{2}$ are arbitrary points.

1. Prove that the class $n a$ for every $n \in \mathbb{Z}$ can be represented by an embedded sphere.
2. Prove that the class $n a+m b$ for every $n, m \in \mathbb{Z} \backslash\{0\}$ can be represented by an embedded surface Σ of genus

$$
g=(|n|-1)(|m|-1) .
$$

Exercise 4. (Tangent bundle of $\left.\mathbb{C P}^{k}\right)$ Let $\tau \subset \mathbb{C P}^{k} \times \mathbb{C}^{k+1}$ denote the tautological line bundle over $\mathbb{C P}^{k}$ and τ^{\perp} its orthogonal complement using the standard Hermitian metric on \mathbb{C}^{k+1}.

1. Prove that $T \mathbb{C P}^{k} \cong \operatorname{Hom}\left(\tau, \tau^{\perp}\right)$ as complex vector bundles.
2. Prove that $c_{1}\left(\tau^{*}\right)$ is a generator of $H^{2}\left(\mathbb{C P}^{k} ; \mathbb{Z}\right)$.

You can hand in solutions in the lecture on Thursday, 18 November 2021.

