

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Winter term 2021

Prof. D. Kotschick S. Gritschacher

Mathematical Gauge Theory II

Sheet 4

Exercise 1. (Intersection form of a product of surfaces) Let Σ_g, Σ_h denote smooth closed oriented surfaces of genus $g, h \ge 0$.

- 1. For every $n \ge 0$ determine a basis of $H_n(\Sigma_g \times \Sigma_h; \mathbb{Z})$, for example, by using the standard basis of $H_1(\Sigma_g; \mathbb{Z})$ represented by 2g embedded circles.
- 2. Calculate the Euler characteristic $\chi(\Sigma_g \times \Sigma_h)$ and compare with the general result that the Euler characteristic is multiplicative, that is, $\chi(M \times N) = \chi(M)\chi(N)$ for compact manifolds M, N.
- 3. Determine the intersection form of $\Sigma_g \times \Sigma_h$.

Exercise 2. (Embedded surfaces in \mathbb{CP}^2) A projective line is a linear \mathbb{CP}^1 in \mathbb{CP}^2 (coming from a linear subspace $\mathbb{C}^2 \subset \mathbb{C}^3$). Let $d \ge 0$ be a natural number.

- 1. We call d projective lines in \mathbb{CP}^2 in general position if all intersections between them are transverse and if at most two projective lines intersect in a given point p for all $p \in \mathbb{CP}^2$. Prove that there exists d projective lines in \mathbb{CP}^2 in general position for all $d \ge 0$.
- 2. Determine a smooth surface representing the class $d[\mathbb{CP}^1] \in H_2(\mathbb{CP}^2;\mathbb{Z})$. What is its genus?

Exercise 3. (Embedded surfaces in $S^2 \times S^2$) Let $M = S^2 \times S^2$ and consider the homology classes $a, b \in H_2(M; \mathbb{Z})$ defined by

$$a = \left[S^2 \times \{p\}\right], \quad b = \left[\{q\} \times S^2\right],$$

where $p, q \in S^2$ are arbitrary points.

- 1. Prove that the class na for every $n \in \mathbb{Z}$ can be represented by an embedded sphere.
- 2. Prove that the class na + mb for every $n, m \in \mathbb{Z} \setminus \{0\}$ can be represented by an embedded surface Σ of genus

$$g = (|n| - 1)(|m| - 1).$$

(please turn)

Exercise 4. (Tangent bundle of \mathbb{CP}^k) Let $\tau \subset \mathbb{CP}^k \times \mathbb{C}^{k+1}$ denote the tautological line bundle over \mathbb{CP}^k and τ^{\perp} its orthogonal complement using the standard Hermitian metric on \mathbb{C}^{k+1} .

- 1. Prove that $T\mathbb{CP}^k \cong \operatorname{Hom}(\tau, \tau^{\perp})$ as complex vector bundles.
- 2. Prove that $c_1(\tau^*)$ is a generator of $H^2(\mathbb{CP}^k;\mathbb{Z})$.

You can hand in solutions in the lecture on Thursday, 18 November 2021.