
Let’s look more generally at a vector bundle π : E → X. Then
dπ : TE → TX is a map of vector bundles covering π, and by the
universal property of the pullback we get a map π∗ : TE → π∗TX
of vector bundles over E which is dπ in every fibre. In particular, it
is surjective in every fibre because π is a submersion, so ker(π∗) is a
subbundle of TE. It consists precisely of the tangent vectors tangent
to the fibres of π : E → X. Moreover,

T vertE := ker(π∗) ∼= {(x, v, w) | (x, v) ∈ E, w ∈ TvEx ∼= Ex}
∼= {(x, v, w) | x ∈ X, v, w ∈ Ex}
= π∗E .

We have a short exact sequence

0→ T vertE
incl−−→ TE

π∗−→ π∗TX → 0 .

The sequence splits by giving a section s : π∗TX → TE for π∗. Since
s is fibrewise injective, that’s equivalent to specifying a subbundle of
V ⊂ TE which is everywhere complementary to T vertE ⊂ TE, because

for such a bundle V
incl−−→ TE

π∗−→ π∗TX is an isomorphism, say η, and
s := incl ◦ η−1 is a section.

Now take E = T ∗M and recall that ωcan = −dλcan is a symplectic
form on T ∗M . With respect to ωcan, T vertT ∗M is a Lagrangian sub-
bundle, because λcan is defined by first applying π∗, but T vertT ∗M is
by definition the kernel of π∗.

But we already know how to find a complement to a Lagrangian sub-
bundle: Pick an ωcan-compatible almost complex structure J on TT ∗M
and set V := J(T vertT ∗M). Then V is everywhere complementary to
T vertT ∗M , hence gives us a splitting s. In fact, also V is Lagrangian
with respect to ωcan, and of course V ∼= π∗TM . Now

Φ: π∗T ∗M ⊕ π∗TM → TT ∗M, (a, b) 7→ incl(a) + s(b)

is the desired isomorphism. It satisfies everything we want except that
we must check what Φ∗ωcan is.

Thus fix a point (x, γ) ∈ T ∗M , and let (α, v), (β, w) ∈ π∗(T ∗M ⊕
TM)(x,γ), so α, β ∈ TγT

∗
xM and v, w ∈ TxM . Writing Φ(α, v) =

Φ(α, 0) + Φ(0, v) etc. and using the fact that both T vertT ∗M and V
are Lagrangian, we find

φ∗ωcan(Φ(α, v),Φ(β, w)) = ωcan(Φ(α, 0),Φ(0, w))−ωcan(Φ(β, 0),Φ(0, v))

So it’s enough to calculate ωcan(Φ(α, 0),Φ(0, w)), which we can also
write as ωcan(α, s(w)) by how we defined things.

Claim. ωcan(α, s(w)) = −α(w).
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Here we identify TγT
∗
xM
∼= T ∗

xM by a canonical isomorphism and
view α as an element of T ∗

xM . Once we have proved the claim we have

φ∗ωcan(Φ(α, v),Φ(β, w)) = β(v)− α(w)

which is the canonical symplectic structure on T ∗
xM ⊕ TxM .

In retrospect it would have been easier to prove the claim by just
writing out ωcan in local coordinates as we did in the lecture...

Proof of the claim. Let U ⊂ T ∗M be a small neighbourhood of our cho-
sen basepoint (x, γ). On that neighbourhood we choose local sections
extending α and w, i.e. a vertical vector field

A : U → T vertT ∗M |U ⊂ TT ∗M |U
such that A(x, γ) = α, and a section W : U → TM |U such that
W (x, γ) = w. In fact, we can choose W so that it is invariant in
the vertical direction (i.e. independent of the argument γ). Using the
formula for the exterior derivative we have
ωcan(A, s(W )) = −dλcan(A, s(W ))

= s(W )(λcan(A))− A(λcan(s(W ))) + λcan([A, s(W )])

Now λcan is defined by first applying π∗ and A is vertical, so the first
term is certainly zero. But also the last term is zero. For example at
the point (x, γ) ∈ U we have

π∗([A, s(W )](x,γ)) = π∗

(
d

dt

∣∣∣
t=0

(φA−t)∗(s(W )φAt (x,γ))

)
,

where φAt is the local flow of A on U . But since A is vertical, this flow
is vertical, so π ◦ φAt = π. By the chain rule, because π ◦ s = id, and
because W is invariant in the vertical direction, we then get

π∗([A, s(W )](x,γ)) =
d

dt

∣∣∣
t=0
WφAt (x,γ) = 0 .

The only term left is−A(λcan(s(W ))). By definition of λcan, λcan(s(W ))
is simply the function U → R, (y, τ) 7→ τ(W(y,τ)). Therefore,

−A(λcan(s(W )))(x,γ) = − d

dt

∣∣∣
t=0

(γ + tα)(W(x,γ)) = −α(w) .
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