Let's look more generally at a vector bundle $\pi: E \rightarrow X$. Then $d \pi: T E \rightarrow T X$ is a map of vector bundles covering π, and by the universal property of the pullback we get a map $\pi_{*}: T E \rightarrow \pi^{*} T X$ of vector bundles over E which is $d \pi$ in every fibre. In particular, it is surjective in every fibre because π is a submersion, so $\operatorname{ker}\left(\pi_{*}\right)$ is a subbundle of $T E$. It consists precisely of the tangent vectors tangent to the fibres of $\pi: E \rightarrow X$. Moreover,

$$
\begin{aligned}
T^{\mathrm{vert}} E:=\operatorname{ker}\left(\pi_{*}\right) & \cong\left\{(x, v, w) \mid(x, v) \in E, w \in T_{v} E_{x} \cong E_{x}\right\} \\
& \cong\left\{(x, v, w) \mid x \in X, v, w \in E_{x}\right\} \\
& =\pi^{*} E
\end{aligned}
$$

We have a short exact sequence

$$
0 \rightarrow T^{\mathrm{vert}} E \xrightarrow{\mathrm{incl}} T E \xrightarrow{\pi_{*}} \pi^{*} T X \rightarrow 0 .
$$

The sequence splits by giving a section $s: \pi^{*} T X \rightarrow T E$ for π_{*}. Since s is fibrewise injective, that's equivalent to specifying a subbundle of $V \subset T E$ which is everywhere complementary to $T^{\text {vert }} E \subset T E$, because for such a bundle $V \xrightarrow{\text { incl }} T E \xrightarrow{\pi_{*}} \pi^{*} T X$ is an isomorphism, say η, and $s:=\operatorname{incl} \circ \eta^{-1}$ is a section.

Now take $E=T^{*} M$ and recall that $\omega_{\text {can }}=-d \lambda_{\text {can }}$ is a symplectic form on $T^{*} M$. With respect to $\omega_{\text {can }}, T^{\text {vert }} T^{*} M$ is a Lagrangian subbundle, because $\lambda_{\text {can }}$ is defined by first applying π_{*}, but $T^{\mathrm{vert}} T^{*} M$ is by definition the kernel of π_{*}.

But we already know how to find a complement to a Lagrangian subbundle: Pick an $\omega_{\text {can }}$-compatible almost complex structure J on $T T^{*} M$ and set $V:=J\left(T^{\text {vert }} T^{*} M\right)$. Then V is everywhere complementary to $T^{\text {vert }} T^{*} M$, hence gives us a splitting s. In fact, also V is Lagrangian with respect to $\omega_{\text {can }}$, and of course $V \cong \pi^{*} T M$. Now

$$
\Phi: \pi^{*} T^{*} M \oplus \pi^{*} T M \rightarrow T T^{*} M,(a, b) \mapsto \operatorname{incl}(a)+s(b)
$$

is the desired isomorphism. It satisfies everything we want except that we must check what $\Phi^{*} \omega_{\text {can }}$ is.

Thus fix a point $(x, \gamma) \in T^{*} M$, and let $(\alpha, v),(\beta, w) \in \pi^{*}\left(T^{*} M \oplus\right.$ $T M)_{(x, \gamma)}$, so $\alpha, \beta \in T_{\gamma} T_{x}^{*} M$ and $v, w \in T_{x} M$. Writing $\Phi(\alpha, v)=$ $\Phi(\alpha, 0)+\Phi(0, v)$ etc. and using the fact that both $T^{\mathrm{vert}} T^{*} M$ and V are Lagrangian, we find
$\phi^{*} \omega_{\text {can }}(\Phi(\alpha, v), \Phi(\beta, w))=\omega_{\text {can }}(\Phi(\alpha, 0), \Phi(0, w))-\omega_{\text {can }}(\Phi(\beta, 0), \Phi(0, v))$
So it's enough to calculate $\omega_{\text {can }}(\Phi(\alpha, 0), \Phi(0, w))$, which we can also write as $\omega_{\text {can }}(\alpha, s(w))$ by how we defined things.

Claim. $\omega_{\text {can }}(\alpha, s(w))=-\alpha(w)$.

Here we identify $T_{\gamma} T_{x}^{*} M \cong T_{x}^{*} M$ by a canonical isomorphism and view α as an element of $T_{x}^{*} M$. Once we have proved the claim we have

$$
\phi^{*} \omega_{\text {can }}(\Phi(\alpha, v), \Phi(\beta, w))=\beta(v)-\alpha(w)
$$

which is the canonical symplectic structure on $T_{x}^{*} M \oplus T_{x} M$.
In retrospect it would have been easier to prove the claim by just writing out $\omega_{\text {can }}$ in local coordinates as we did in the lecture...
Proof of the claim. Let $U \subset T^{*} M$ be a small neighbourhood of our chosen basepoint (x, γ). On that neighbourhood we choose local sections extending α and w, i.e. a vertical vector field

$$
A:\left.\left.U \rightarrow T^{\mathrm{vert}} T^{*} M\right|_{U} \subset T T^{*} M\right|_{U}
$$

such that $A(x, \gamma)=\alpha$, and a section $W:\left.U \rightarrow T M\right|_{U}$ such that $W(x, \gamma)=w$. In fact, we can choose W so that it is invariant in the vertical direction (i.e. independent of the argument γ). Using the formula for the exterior derivative we have

$$
\begin{aligned}
\omega_{\text {can }}(A, s(W)) & =-d \lambda_{\text {can }}(A, s(W)) \\
& =s(W)\left(\lambda_{\text {can }}(A)\right)-A\left(\lambda_{\text {can }}(s(W))\right)+\lambda_{\text {can }}([A, s(W)])
\end{aligned}
$$

Now $\lambda_{\text {can }}$ is defined by first applying π_{*} and A is vertical, so the first term is certainly zero. But also the last term is zero. For example at the point $(x, \gamma) \in U$ we have

$$
\pi_{*}\left([A, s(W)]_{(x, \gamma)}\right)=\pi_{*}\left(\left.\frac{d}{d t}\right|_{t=0}\left(\phi_{-t}^{A}\right)_{*}\left(s(W)_{\phi_{t}^{A}(x, \gamma)}\right)\right),
$$

where ϕ_{t}^{A} is the local flow of A on U. But since A is vertical, this flow is vertical, so $\pi \circ \phi_{t}^{A}=\pi$. By the chain rule, because $\pi \circ s=i d$, and because W is invariant in the vertical direction, we then get

$$
\pi_{*}\left([A, s(W)]_{(x, \gamma)}\right)=\left.\frac{d}{d t}\right|_{t=0} W_{\phi_{t}^{A}(x, \gamma)}=0
$$

The only term left is $-A\left(\lambda_{\text {can }}(s(W))\right)$. By definition of $\lambda_{\text {can }}, \lambda_{\text {can }}(s(W))$ is simply the function $U \rightarrow \mathbb{R},(y, \tau) \mapsto \tau\left(W_{(y, \tau)}\right)$. Therefore,

$$
-A\left(\lambda_{\operatorname{can}}(s(W))\right)_{(x, \gamma)}=-\left.\frac{d}{d t}\right|_{t=0}(\gamma+t \alpha)\left(W_{(x, \gamma)}\right)=-\alpha(w) .
$$

