Let's look more generally at a vector bundle $\pi: E \to X$. Then $d\pi: TE \to TX$ is a map of vector bundles covering π , and by the universal property of the pullback we get a map $\pi_*: TE \to \pi^*TX$ of vector bundles over E which is $d\pi$ in every fibre. In particular, it is surjective in every fibre because π is a submersion, so ker (π_*) is a subbundle of TE. It consists precisely of the tangent vectors tangent to the fibres of $\pi: E \to X$. Moreover,

$$T^{\operatorname{vert}}E := \ker(\pi_*) \cong \{(x, v, w) \mid (x, v) \in E, w \in T_v E_x \cong E_x\}$$
$$\cong \{(x, v, w) \mid x \in X, v, w \in E_x\}$$
$$= \pi^* E.$$

We have a short exact sequence

$$0 \to T^{\text{vert}} E \xrightarrow{\text{incl}} TE \xrightarrow{\pi_*} \pi^* TX \to 0.$$

The sequence splits by giving a section $s: \pi^*TX \to TE$ for π_* . Since s is fibrewise injective, that's equivalent to specifying a subbundle of $V \subset TE$ which is everywhere complementary to $T^{\text{vert}}E \subset TE$, because for such a bundle $V \xrightarrow{\text{incl}} TE \xrightarrow{\pi_*} \pi^*TX$ is an isomorphism, say η , and $s := \text{incl} \circ \eta^{-1}$ is a section.

Now take $E = T^*M$ and recall that $\omega_{\text{can}} = -d\lambda_{\text{can}}$ is a symplectic form on T^*M . With respect to ω_{can} , $T^{\text{vert}}T^*M$ is a Lagrangian subbundle, because λ_{can} is defined by first applying π_* , but $T^{\text{vert}}T^*M$ is by definition the kernel of π_* .

But we already know how to find a complement to a Lagrangian subbundle: Pick an ω_{can} -compatible almost complex structure J on TT^*M and set $V := J(T^{\text{vert}}T^*M)$. Then V is everywhere complementary to $T^{\text{vert}}T^*M$, hence gives us a splitting s. In fact, also V is Lagrangian with respect to ω_{can} , and of course $V \cong \pi^*TM$. Now

$$\Phi: \pi^*T^*M \oplus \pi^*TM \to TT^*M, (a, b) \mapsto \operatorname{incl}(a) + s(b)$$

is the desired isomorphism. It satisfies everything we want except that we must check what $\Phi^* \omega_{can}$ is.

Thus fix a point $(x, \gamma) \in T^*M$, and let $(\alpha, v), (\beta, w) \in \pi^*(T^*M \oplus TM)_{(x,\gamma)}$, so $\alpha, \beta \in T_{\gamma}T_x^*M$ and $v, w \in T_xM$. Writing $\Phi(\alpha, v) = \Phi(\alpha, 0) + \Phi(0, v)$ etc. and using the fact that both $T^{\text{vert}}T^*M$ and V are Lagrangian, we find

$$\phi^*\omega_{\operatorname{can}}(\Phi(\alpha, v), \Phi(\beta, w)) = \omega_{\operatorname{can}}(\Phi(\alpha, 0), \Phi(0, w)) - \omega_{\operatorname{can}}(\Phi(\beta, 0), \Phi(0, v))$$

So it's enough to calculate $\omega_{can}(\Phi(\alpha, 0), \Phi(0, w))$, which we can also write as $\omega_{can}(\alpha, s(w))$ by how we defined things.

Claim. $\omega_{can}(\alpha, s(w)) = -\alpha(w).$

Here we identify $T_{\gamma}T_x^*M \cong T_x^*M$ by a canonical isomorphism and view α as an element of T_x^*M . Once we have proved the claim we have

$$\phi^*\omega_{\operatorname{can}}(\Phi(\alpha, v), \Phi(\beta, w)) = \beta(v) - \alpha(w)$$

which is the canonical symplectic structure on $T_x^*M \oplus T_xM$.

In retrospect it would have been easier to prove the claim by just writing out ω_{can} in local coordinates as we did in the lecture...

Proof of the claim. Let $U \subset T^*M$ be a small neighbourhood of our chosen basepoint (x, γ) . On that neighbourhood we choose local sections extending α and w, i.e. a vertical vector field

$$A\colon U\to T^{\operatorname{vert}}T^*M|_U\subset TT^*M|_U$$

such that $A(x,\gamma) = \alpha$, and a section $W: U \to TM|_U$ such that $W(x,\gamma) = w$. In fact, we can choose W so that it is invariant in the vertical direction (i.e. independent of the argument γ). Using the formula for the exterior derivative we have

$$\omega_{\operatorname{can}}(A, s(W)) = -d\lambda_{\operatorname{can}}(A, s(W))$$

= $s(W)(\lambda_{\operatorname{can}}(A)) - A(\lambda_{\operatorname{can}}(s(W))) + \lambda_{\operatorname{can}}([A, s(W)])$

Now λ_{can} is defined by first applying π_* and A is vertical, so the first term is certainly zero. But also the last term is zero. For example at the point $(x, \gamma) \in U$ we have

$$\pi_*([A, s(W)]_{(x,\gamma)}) = \pi_*\left(\frac{d}{dt}\Big|_{t=0} (\phi^A_{-t})_*(s(W)_{\phi^A_t(x,\gamma)})\right) ,$$

where ϕ_t^A is the local flow of A on U. But since A is vertical, this flow is vertical, so $\pi \circ \phi_t^A = \pi$. By the chain rule, because $\pi \circ s = id$, and because W is invariant in the vertical direction, we then get

$$\pi_*([A, s(W)]_{(x,\gamma)}) = \frac{d}{dt}\Big|_{t=0} W_{\phi_t^A(x,\gamma)} = 0$$

The only term left is $-A(\lambda_{can}(s(W)))$. By definition of λ_{can} , $\lambda_{can}(s(W))$ is simply the function $U \to \mathbb{R}$, $(y, \tau) \mapsto \tau(W_{(y,\tau)})$. Therefore,

$$-A(\lambda_{\operatorname{can}}(s(W)))_{(x,\gamma)} = -\frac{d}{dt}\Big|_{t=0}(\gamma + t\alpha)(W_{(x,\gamma)}) = -\alpha(w).$$