

LUDWIG-MAXIMILIANS UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2022

Prof. D. Kotschick Dr. S. Gritschacher

Symplectic Geometry

Sheet 9

Exercise 1. Let M be a smooth manifold.

- 1. Let $\alpha \in \Omega^1(M)$ be a nowhere vanishing 1-form. Show that if α is closed, then the distribution $\ker(\alpha) \subset TM$ is integrable. In fact, show that $\ker(\alpha)$ is integrable if and only if $\alpha \wedge d\alpha = 0$.
- 2. Let $\omega \in \Omega^2(M)$ be a 2-form of constant rank. Define the distribution ker $(\omega) \subset TM$ by

 $\ker(\omega)_p = \{ X \in T_p M \mid \iota_X \omega_p = 0 \}$

for $p \in M$. Show that ker(ω) is integrable if ω is closed.

Exercise 2. Let ∇ be an affine connection on a smooth manifold M. Let $\omega \in \Omega^2(M)$ and suppose that ∇ is compatible with ω , that is, $L_X \omega(Y, Z) = \omega(\nabla_X Y, Z) + \omega(Y, \nabla_X Z)$ for all $X, Y, Z \in \mathfrak{X}(M)$. Show that

$$d\omega(X,Y,Z) = \omega(T^{\nabla}(X,Y),Z) - \omega(T^{\nabla}(X,Z),Y) + \omega(T^{\nabla}(Y,Z),X)$$

for all vector fields $X, Y, Z \in \mathfrak{X}(M)$.

Exercise 3. Let (M, g, J) be a Kähler manifold and \mathcal{F} a Lagrangian foliation of M such that $T\mathcal{F}$ is preserved by the Levi-Civita connection ∇ of q (this is the set-up of Exercise 3 of Sheet 8). Show that the metric g is flat. That is, show that the curvature tensor of ∇ defined by R(X,Y)Z = $\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$ vanishes identically for $X, Y, Z \in \mathfrak{X}(M)$.

Exercise 4. On \mathbb{R}^2 , with its standard coordinates x, y, consider the 2-form

 $\omega = (2 + \sin(2\pi x)\sin(2\pi y))dx \wedge dy.$

- 1. Show that the complementary foliations \mathcal{F} and \mathcal{G} given by the factors of \mathbb{R}^2 define a Künneth structure on (\mathbb{R}^2, ω) .
- 2. Let ∇ be the Künneth connection of $(\omega, \mathcal{F}, \mathcal{G})$. Calculate the vector fields $\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}$ and $\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}$.
- 3. Let $R(X,Y)Z = \nabla_X \nabla_Y Z \nabla_Y \nabla_X Z \nabla_{[X,Y]} Z$ denote the curvature of ∇ . Calculate R(X,Y)Zfor suitable vector fields X, Y, Z and show that it does not vanish identically. Hence, the Künneth structure $(\omega, \mathcal{F}, \mathcal{G})$ is not flat.
- 4. Can you construct a non-flat Künneth structure on the torus T^2 ?

Please hand in your solutions in the lecture on 15 July 2022.