

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Summer term 2022

Prof. D. Kotschick Dr. S. Gritschacher

Symplectic Geometry

Sheet 7

Exercise 1. Let G be a Lie group acting smoothly on a symplectic manifold (M, ω) . Prove that the action by G is Hamiltonian if and only if there is a Lie algebra homomorphism $\mathfrak{g} \to C^{\infty}(M), X \mapsto \mu^X$ such that μ^X is a Hamiltonian function for X^{\sharp} . (The Lie bracket on $C^{\infty}(M)$ is the Poisson bracket $\{f, g\} = \omega(X_f, X_g)$.)

Exercise 2. Suppose that G acts smoothly on a connected symplectic manifold (M, ω) , and let $\mathfrak{g} \to C^{\infty}(M), X \mapsto \mu^X$ be a linear map such that μ^X is a Hamiltonian function for X^{\sharp} .

1. Prove that there is a bilinear form $\tau \colon \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ satisfying

$$\tau(X,Y) = \{\mu^X, \mu^Y\} - \mu^{[X,Y]}$$

for all $X, Y \in \mathfrak{g}$. Verify the identity $\tau([X, Y], Z) + \tau([Z, X], Y) + \tau([Y, Z], X) = 0$.

2. Now assume that there is a linear map $\sigma: \mathfrak{g} \to \mathbb{R}$ such that $\tau(X, Y) = \sigma([X, Y])$. Show that the action by G is Hamiltonian. [Hint: Modify μ using σ]

Exercise 3. View an element $\varphi \in SL_2(\mathbb{Z})$ as a linear diffeomorphism of T^2 . Assume that φ preserves a 1-dimensional foliation \mathcal{F} . Prove that the 4-manifold $N = M(\varphi) \times S^1$, where $M(\varphi)$ denotes the mapping torus associated with φ , carries an induced Künneth structure.

Exercise 4. Let $\varphi \colon M \to M$ be a diffeomorphism of a connected smooth manifold M. Let $M(\varphi)$ be the mapping torus associated with φ .

- 1. Prove that $H^1_{dR}(M(\varphi)) \cong \mathbb{R} \oplus H^1_{dR}(M)^{\varphi}$, where $H^1_{dR}(M)^{\varphi}$ denotes the subspace of $H^1_{dR}(M)$ fixed by φ^* . [Hint: You can use the Mayer-Vietoris sequence.]
- 2. Find an example of a 4-manifold, equipped with a Künneth structure, of the form $M(\varphi) \times S^1$ whose first Betti number (= dim H_{dR}^1) equals 3.

Please hand in your solutions in the lecture on 1 July 2022.