Symplectic Geometry

Sheet 3

Exercise 1. 1. Let (V, ω) be a $2 n$-dimensional symplectic vector space. Prove that for every $l \leq n$ and every $k \leq n-l$ the linear map $\bigwedge^{l} V^{*} \xrightarrow{\wedge \omega^{k}} \bigwedge^{l+2 k} V^{*}$ is injective.
2. Let M be a closed connected $2 n$-dimensional manifold and let $\omega \in \Omega^{2}(M)$ be non-degenerate (but not necessarily closed). Prove that if $k \leq n$ and $k \neq n-1$, then ω^{k} cannot be exact.

Exercise 2. Let (M, ω) be a connected symplectic manifold and let $f: M \rightarrow \mathbb{R} \backslash\{0\}$ be a smooth map. Prove that $f \omega$ is symplectic if and only if $\operatorname{dim}(M)=2$ or f is constant.

Exercise 3. Find a manifold whose cohomology groups are that of $\mathbb{C} P^{3}$ (and hence that of a symplectic manifold), but which is not (cohomologically) symplectic.

Exercise 4. Let $\left(\Sigma_{1}, \omega_{1}\right)$ and $\left(\Sigma_{2}, \omega_{2}\right)$ be closed connected symplectic surfaces. Let $\pi_{i}: \Sigma_{1} \times \Sigma_{2} \rightarrow \Sigma_{i}$ $(i=1,2)$ denote the projection onto the i-th factor.

1. Prove that for every $\lambda \in \mathbb{R} \backslash\{0\}$ the 2 -form

$$
\Omega_{\lambda}:=\lambda \pi_{1}^{*}\left(\omega_{1}\right)+\lambda^{-1} \pi_{2}^{*}\left(\omega_{2}\right)
$$

is a symplectic form on $\Sigma_{1} \times \Sigma_{2}$ whose associated volume form is independent of λ.
2. Let $a \subset \Sigma_{1}$ and $b \subset \Sigma_{2}$ be curves. Show that $a \times b$ is a Lagrangian submanifold of $\left(\Sigma_{1} \times \Sigma_{2}, \Omega_{\lambda}\right)$, and conclude that $\int_{a \times b} \Omega_{\lambda}=0$.
3. Suppose that Σ_{1} and Σ_{2} have genus g and h, respectively. Then $H_{2}\left(\Sigma_{1} \times \Sigma_{2} ; \mathbb{Z}\right)$ is the free abelian group generated by the fundamental classes of the submanifolds

$$
\Sigma_{1} \times \mathrm{pt}, \quad \mathrm{pt} \times \Sigma_{2}, \quad a_{i} \times b_{j} \quad(i=1, \ldots, 2 g, j=1 \ldots 2 h)
$$

where the a_{i} and b_{j} are certain curves in Σ_{1} and Σ_{2}, respectively. ${ }^{1}$ Integrating Ω_{λ} over these submanifolds defines a homomorphism $H_{2}\left(\Sigma_{1} \times \Sigma_{2} ; \mathbb{Z}\right) \rightarrow \mathbb{R}$. Calculate its image.

[^0]4. Let $r_{i}:=\int_{\Sigma_{i}} \omega_{i} \in \mathbb{R}$ be the volume of Σ_{i}. Prove that if ($\Sigma_{1} \times \Sigma_{2}, \Omega_{1}$) and ($\Sigma_{1} \times \Sigma_{2}, \Omega_{\lambda}$) are symplectomorphic, then there are integers $k, l \in \mathbb{Z}$ with $\lambda=k+l r_{2} / r_{1}$. Conclude that for a generic λ there is no such symplectomorphism.

Please hand in your solutions in the lecture on Friday, 20 May 2022.

[^0]: ${ }^{1}$ If you are not familiar with (integral) homology, don't worry. You can still complete this part of the exercise.

