

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 July 11, 2016

FUNCTIONAL ANALYSIS TUTORIAL 13

Problem 1. Determine all $p \in [1, \infty]$, for which the sequence $(e_n)_{n \in \mathbb{N}} \subset \ell^p$, given by $e_n = (\delta_{nk})_{k \in \mathbb{N}}$, converges weakly to $0 \in \ell^p$. [*Hint:* Problem 4 on Exercise Sheet 8 for the case $p = \infty$.]

Problem 2. Let X be a normed space. Prove:

(i) In X', weak convergence implies weak-* convergence.

(ii) If X is reflexive, then weak and weak-* convergence in X' coincide.

(iii) In general, weak and weak-* convergence are not the same.