

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 July 4, 2016

FUNCTIONAL ANALYSIS TUTORIAL 12

Problem 1. Let X be a normed space. Prove:

- (i) Weakly bounded sets in X are bounded.
- (ii) Weak Cauchy sequences in X are bounded.

Problem 2. Let X be a normed space. Prove:

- (i) For all $x \in X$ there exists $F \in X'$ such that F(x) = ||x|| and ||F|| = 1. [*Hint:* Theorem 4.16.]
- (ii) X' separates points in X, i.e. for all $x, y \in X$ with $x \neq y$, there exists $F \in X'$ such that $F(x) \neq F(y)$.
- (*iii*) Weak limits are unique.

Problem 3. Let X be a normed space, let $n \in \mathbb{N}$, let $x_1, \ldots, x_n \in X$ be linearly independent, and let $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$. Show that there exists $F \in X'$ such that

$$F(x_j) = \alpha_j \qquad \forall j \in \mathbb{N} \text{ with } 1 \leq j \leq n.$$