

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 June 27, 2016

FUNCTIONAL ANALYSIS TUTORIAL 11

Problem 1. Let \mathcal{H} be a Hilbert space, and let $T : \mathcal{H} \to \mathcal{H}$ be a symmetric operator, i.e. $\langle x, Ty \rangle = \langle Tx, y \rangle$ for all $x, y \in \mathcal{H}$.

- (i) Prove that T is bounded, by using the Uniform Boundedness Principle. [*Hint:* Prove first that $\{f_y \in \mathcal{H}' \mid f_y(x) := \langle Ty, x \rangle, \|y\| = 1\}$ is pointwise bounded.]
- (ii) Prove that T is bounded, by using the Closed Graph Theorem.

Problem 2. Let X be the Banach space of continuous real-valued functions $C([0, 1], \mathbb{R})$, equipped with $\|\cdot\|_{\infty}$, and let Y be the normed linear space $C([0, 1], \mathbb{R})$, equipped with $\|\cdot\|_1$, where $\|f\|_1 = \int_0^1 |f(x)| dx$.

- (i) Prove that the identity operator $id_{X,Y}: X \to Y, f \mapsto f$ is bounded.
- (*ii*) Prove that the identity operator $id_{Y,X}: Y \to X, f \mapsto f$ is not bounded.
- (*iii*) Prove that $id_{X,Y}$ is not an open map.
- (iv) Prove that Y is not complete, by using
 - (a) the Open Mapping Theorem.
 - (b) the Inverse Mapping Theorem.
 - (c) Corollary 4.8 of the Inverse Mapping Theorem.
 - (d) Corollary 4.3 of Baire's Category Theorem.

[*Hint*: Prove that, for each $n \in \mathbb{N}$, the set $B_n := \{f \in C([0,1],\mathbb{R}) \mid ||f||_{\infty} \leq n\}$ is nowhere dense in Y and conclude that Y is meagre (i.e. that it is a countable union of nowhere dense sets.]