

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 June 20, 2016

FUNCTIONAL ANALYSIS TUTORIAL 10

Problem 1. Which of the following operators are compact? Prove your claims.

- (i) $T_1: X \to X, x \mapsto x$, where X is an infinite-dimensional Banach space.
- (*ii*) $T_2: \ell^p \to \ell^q, x \mapsto x$, where $1 \leq p < q \leq \infty$.
- (iii) $T_3: X \to X$ such that T_3^{-1} is a bounded linear map, where X is an infinite-dimensional Banach space.
- (*iv*) $T_4: C([0,1]) \to C([0,1]), f \mapsto Tf, Tf(x) := f(0) + xf(1)$ for all $x \in [0,1]$.

Problem 2. Let a, b > 0 and

$$E := \left\{ f \in C^1([0,1]) \, \Big| \, |f(0)| \leqslant a, \int_0^1 |f'(x)|^2 dx \leqslant b^2 \right\}.$$

Prove that E is relatively compact in C([0, 1]).

Problem 3. Let \mathcal{H} be a separable Hilbert space, let $\{\varphi_n\}_{n\in\mathbb{N}}$ be an orthonormal basis in \mathcal{H} , and let $\{\psi_n\}_{n\in\mathbb{N}} \subset \mathcal{H}$ be an orthonormal system such that

$$\sum_{n=1}^{\infty} \|\varphi_n - \psi_n\|^2 < \infty \,.$$

(i) Let $N \in \mathbb{N}$ be such that $\sum_{n>N} \|\varphi_n - \psi_n\|^2 < 1$, and let $V_N := (\{\psi_n\}_{n>N})^{\perp}$. Prove that the map

$$P: V_N \to \operatorname{span}\{\varphi_n\}_{n=1}^N, \xi \mapsto \sum_{n=1}^N \langle \varphi_n, \xi \rangle \varphi_n$$

is injective.

- (*ii*) Prove that, for N and V_N as in (*i*), we have dim $(V_N) = N$, and conclude that $V_N = \operatorname{span}\{\psi_n\}_{n=1}^N$.
- (*iii*) Prove that $\{\psi_n\}_{n\in\mathbb{N}}$ is an orthonormal basis in \mathcal{H} .