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Functional Analysis
Tutorial 9 – Solutions of P2(iii)-(v) and P3

Problem 2 (Projections onto closed convex sets). Let H be a Hilbert space, and let
Σ ⊂ H be a non-empty closed convex subset.

(iii) Prove that, if x 6∈ Σ, then PΣ(x) ∈ ∂Σ, and dist(x,Σ) = dist(x, ∂Σ).

[Hint: Use the continuity of the map t 7→ tx+(1−t)PΣ(x).]

Proof. For fixed x ∈ H such that x 6∈ Σ, let f : R → H, f(t) := tx+(1−t)PΣ(x).
Then f is continuous (‖f(t)− f(s)‖ = ‖x−PΣ(x)‖ |t−s|). By contradiction, assume
that PΣ(x) ∈ Σ̊, i.e. f(0) ∈ Σ̊. Hence, by continuity, f−1(Σ̊) is an open neighbour-
hood of 0, i.e. there exists δ ∈ (0, 1) such that |t| 6 δ implies f(t) ∈ Σ̊. Hence,

dist(x,Σ) 6 ‖x−f(δ)‖ = ‖f(1)−f(δ)‖ = (1−δ)‖x−PΣ(x)‖ = (1−δ) dist(x,Σ) ,

a contradiction, since (1−δ) < 1. So, PΣ(x) ∈ ∂Σ. Moreover, since Σ is closed, and
thus ∂Σ ⊂ Σ, we have

dist(x,Σ) = inf
z∈Σ
‖x−z‖ 6 inf

z∈∂Σ
‖x−z‖ = dist(x, ∂Σ) .

On the other hand, since PΣ(x) ∈ ∂Σ, dist(x, ∂Σ) 6 ‖x−PΣ(x)‖ = dist(x,Σ).

(iv) Let f ∈ C1(R,R) be convex and let Σ ⊂ R2 be given by

Σ :=
{

(x, y) ∈ R2
∣∣ f(x) 6 y

}
.

Prove that, for all (a, b) ∈ R2 with (a, b) 6∈ Σ, we have PΣ((a, b)) = (x, f(x)), where
x ∈ R satisfies the equation (b−f(x))f ′(x) + a− x = 0.

Proof. Since f is convex, and since Σ is the region above the graph of f , it is a
convex set (by def. of a convex function). Moreover, Σ = F−1([0,∞)), where F is
the continuous function (x, y) 7→ y−f(x), hence Σ is also closed. For (a, b) 6∈ Σ,
by (iii), we have PΣ((a, b)) ∈ ∂Σ, i.e. PΣ((a, b)) = (x, f(x)) for some x ∈ R. By
definition of PΣ and (iii), the function

D(t) := |(a, b)− (t, f(t))| =
√

(a−t)2 + (b− f(t))2

takes its minimum at x, i.e. x satisfies dD
dt

(x) = 0, which is equivalent to the given
equation.
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(v) Find the projection of the point (1, 1
2
) ∈ R2 onto Σ := {(x, y) ∈ R2 |x2 6 y}.

Proof. By applying (iv) with f(x) = x2, we get that x solves the equation(
1
2
− x2

)
2x+ 1− x = 0 ⇔ x3 = 1

2
,

i.e. x = 2−1/3, and therefore PΣ((1, 1
2
)) = (2−1/3, 2−2/3).

Problem 3. Let (X, 〈·, ·〉) be an inner product space. Complete the proofs of Lemma
2.21, Lemma 2.22, and Remark 2.23 (2), i.e. prove the following statements:

(i) |〈x, y〉| 6 ‖x‖‖y‖ for all x, y ∈ X (Cauchy-Bunyakowsky-Schwarz inequality).

[Hint: Use the fact that ‖αx+y‖2 > 0 with α = −〈y, x〉/〈x, x〉]

Proof. We have

0 6 ‖αx+y‖2 = |α|2‖x‖2 + ‖y‖2 + 2 Re(α〈y, x〉)

=
|〈y, x〉|2

‖x‖2
+ ‖y‖2 − 2

|〈y, x〉|2

‖x‖2
= ‖y‖2 − |〈y, x〉|

2

‖x‖2

and thus |〈y, x〉|2 6 ‖y‖2‖x‖2.

(ii) ‖x‖X :=
√
〈x, x〉 defines a norm on X (the norm induced by the inner product).

Proof. Homogeneity and positive definiteness for x 6= 0 follow directly from the
properties of 〈·, ·〉. Moreover,

‖x+y‖2 = ‖x‖2 + ‖y‖2 + 2 Re(〈x, y〉) 6 ‖x‖2 + ‖y‖2 + 2|〈x, y〉|
6 ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2 ,

where the second inequality is the Cauchy-Schwarz inequality.

(iii) ‖x+y‖2
X + ‖x−y‖2

X = 2‖x‖2
X + 2‖y‖2

X for all x, y ∈ X (Parallelogram Law).

Proof. The identity follows immediately after multiplying out the left side, since the
cross-term Re(〈x, y〉) appears in the second summand with the opposite sign.


