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Problem 2 (Projections onto closed convex sets). Let H be a Hilbert space, and let
> C H be a non-empty closed convex subset.

(iid)

(iv)

Prove that, if € ¥, then Py (z) € 0%, and dist(z, ¥) = dist(x, 0%).
[Hint: Use the continuity of the map ¢ +— tx+(1—t)Pg(z).]

Proof. For fixed x € H such that = & X, let f: R — H, f(t) := ta+(1—t)Ps(x).
Then f is continuous (|| f(t) — f(s)|| = ||lx—Px(x)]|| [t—s|). By contradiction, assume
that Ps(z) € 3, i.e. f(0) € . Hence, by continuity, f~*(2) is an open neighbour-
hood of 0, i.e. there exists & € (0,1) such that |t| < & implies f(¢) € 3. Hence,

dist(z, X) < [lz=f(O)[| = [f(V)=fO) = 1=0)[z—Pu(z)| = (1-0)dist(z, ),

a contradiction, since (1—-§) < 1. So, Py(z) € 0X. Moreover, since ¥ is closed, and
thus 0% C X, we have

dist(z,X) = inf [|[z—z|| < inf ||[z—z| = dist(x,0%).
z€X 2€0%
On the other hand, since Ps(x) € 0%, dist(z,0%) < ||le—Ps(z)|| = dist(z,X). O
Let f € C(R,R) be convex and let 3 C R? be given by

Y= {(m,y) €R2‘f(x) < y}

Prove that, for all (a,b) € R?* with (a,b) € ¥, we have Px((a,b)) = (x, f(x)), where
x € R satisfies the equation (b—f(x))f (x) +a —x = 0.

Proof. Since f is convex, and since Y is the region above the graph of f, it is a
convex set (by def. of a convex function). Moreover, ¥ = F~1([0,00)), where F is
the continuous function (x,y) — y—f(x), hence ¥ is also closed. For (a,b) & ¥,
by (iii), we have Pg((a,b)) € 0%, i.e. Ps((a,b)) = (x, f(x)) for some z € R. By
definition of Py and (iii), the function

D(t) := |(a,b) = (t, f()| = V(a=1)* + (b~ f(t))?

takes its minimum at x, i.e. x satisfies %(x) = 0, which is equivalent to the given

equation. O
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(v) Find the projection of the point (1,1) € R? onto ¥ := {(z,y) € R?|z? < y}.
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Proof. By applying (iv) with f(z) = z*, we get that x solves the equation

(-2 2e+1-2=0 & 2°=1,

i.e. . =27'3 and therefore Ps((1,3)) = (271/3,272/3). O

Problem 3. Let (X, (:,-)) be an inner product space. Complete the proofs of Lemma
2.21, Lemma 2.22, and Remark 2.23 (2), i.e. prove the following statements:

(i) [z, y)| < ||z||ly|| for all z,y € X (Cauchy-Bunyakowsky-Schwarz inequality).

[Hint: Use the fact that ||az+y||* > 0 with o = —(y, z)/(z, 2]
Proof. We have

0 < flaz+yl* = laf*llz]* + [[ylI* + 2Re(ay, 2))

[y, )|* 2o [y, ) 2 Ny, 2)l?
= +yl” =2 = [lylI* =
]2 ]2 (s
and thus [(y, 2)]* < [ly[*[|=]|*. O

(1) ||z||x = v/{x,x) defines a norm on X (the norm induced by the inner product).

Proof. Homogeneity and positive definiteness for x # 0 follow directly from the
properties of (-, -). Moreover,

lz+yll* = llzl® + yll* + 2Re((z, ) < l=]* + lyl* + 2/ (=, )]
< Ml + llyll* + 2ll= [yl = =l + v 1),

where the second inequality is the Cauchy-Schwarz inequality. O
(ii1) ||lz+yl% + lz—yll% = 2||z||% + 2||ly||% for all z,y € X (Parallelogram Law).

Proof. The identity follows immediately after multiplying out the left side, since the
cross-term Re((z,y)) appears in the second summand with the opposite sign.  [J



