

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 June 13, 2016

FUNCTIONAL ANALYSIS TUTORIAL 9 – SOLUTIONS OF P2(iii)-(v) and P3

Problem 2 (Projections onto closed convex sets). Let \mathcal{H} be a Hilbert space, and let $\Sigma \subset \mathcal{H}$ be a non-empty closed convex subset.

(*iii*) Prove that, if $x \notin \Sigma$, then $P_{\Sigma}(x) \in \partial \Sigma$, and $\operatorname{dist}(x, \Sigma) = \operatorname{dist}(x, \partial \Sigma)$. [*Hint:* Use the continuity of the map $t \mapsto tx + (1-t)P_{\Sigma}(x)$.]

Proof. For fixed $x \in \mathcal{H}$ such that $x \notin \Sigma$, let $f : \mathbb{R} \to \mathcal{H}$, $f(t) := tx + (1-t)P_{\Sigma}(x)$. Then f is continuous $(||f(t) - f(s)|| = ||x - P_{\Sigma}(x)|| |t-s|)$. By contradiction, assume that $P_{\Sigma}(x) \in \mathring{\Sigma}$, i.e. $f(0) \in \mathring{\Sigma}$. Hence, by continuity, $f^{-1}(\mathring{\Sigma})$ is an open neighbourhood of 0, i.e. there exists $\delta \in (0, 1)$ such that $|t| \leq \delta$ implies $f(t) \in \mathring{\Sigma}$. Hence,

$$\operatorname{dist}(x,\Sigma) \leqslant \|x - f(\delta)\| = \|f(1) - f(\delta)\| = (1-\delta)\|x - P_{\Sigma}(x)\| = (1-\delta)\operatorname{dist}(x,\Sigma),$$

a contradiction, since $(1-\delta) < 1$. So, $P_{\Sigma}(x) \in \partial \Sigma$. Moreover, since Σ is closed, and thus $\partial \Sigma \subset \Sigma$, we have

$$\operatorname{dist}(x,\Sigma) = \inf_{z \in \Sigma} \|x - z\| \leqslant \inf_{z \in \partial \Sigma} \|x - z\| = \operatorname{dist}(x,\partial\Sigma) \,.$$

On the other hand, since $P_{\Sigma}(x) \in \partial \Sigma$, $\operatorname{dist}(x, \partial \Sigma) \leq ||x - P_{\Sigma}(x)|| = \operatorname{dist}(x, \Sigma)$. \Box

(*iv*) Let $f \in C^1(\mathbb{R}, \mathbb{R})$ be convex and let $\Sigma \subset \mathbb{R}^2$ be given by

$$\Sigma := \left\{ (x, y) \in \mathbb{R}^2 \, \middle| \, f(x) \leqslant y \right\}.$$

Prove that, for all $(a, b) \in \mathbb{R}^2$ with $(a, b) \notin \Sigma$, we have $P_{\Sigma}((a, b)) = (x, f(x))$, where $x \in \mathbb{R}$ satisfies the equation (b-f(x))f'(x) + a - x = 0.

Proof. Since f is convex, and since Σ is the region above the graph of f, it is a convex set (by def. of a convex function). Moreover, $\Sigma = F^{-1}([0,\infty))$, where F is the continuous function $(x, y) \mapsto y - f(x)$, hence Σ is also closed. For $(a, b) \notin \Sigma$, by (iii), we have $P_{\Sigma}((a, b)) \in \partial \Sigma$, i.e. $P_{\Sigma}((a, b)) = (x, f(x))$ for some $x \in \mathbb{R}$. By definition of P_{Σ} and (iii), the function

$$D(t) := |(a,b) - (t,f(t))| = \sqrt{(a-t)^2 + (b-f(t))^2}$$

takes its minimum at x, i.e. x satisfies $\frac{dD}{dt}(x) = 0$, which is equivalent to the given equation.

(v) Find the projection of the point $(1, \frac{1}{2}) \in \mathbb{R}^2$ onto $\Sigma := \{(x, y) \in \mathbb{R}^2 \mid x^2 \leq y\}.$

Proof. By applying (iv) with $f(x) = x^2$, we get that x solves the equation

$$\left(\frac{1}{2} - x^2\right) 2x + 1 - x = 0 \quad \Leftrightarrow \quad x^3 = \frac{1}{2},$$

i.e. $x = 2^{-1/3}$, and therefore $P_{\Sigma}((1, \frac{1}{2})) = (2^{-1/3}, 2^{-2/3}).$

Problem 3. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Complete the proofs of Lemma 2.21, Lemma 2.22, and Remark 2.23 (2), i.e. prove the following statements:

(i) $|\langle x, y \rangle| \leq ||x|| ||y||$ for all $x, y \in X$ (Cauchy-Bunyakowsky-Schwarz inequality). [Hint: Use the fact that $||\alpha x+y||^2 \geq 0$ with $\alpha = -\overline{\langle y, x \rangle}/\langle x, x \rangle$]

Proof. We have

$$0 \leq \|\alpha x + y\|^{2} = |\alpha|^{2} \|x\|^{2} + \|y\|^{2} + 2\operatorname{Re}(\alpha \langle y, x \rangle)$$
$$= \frac{|\langle y, x \rangle|^{2}}{\|x\|^{2}} + \|y\|^{2} - 2\frac{|\langle y, x \rangle|^{2}}{\|x\|^{2}} = \|y\|^{2} - \frac{|\langle y, x \rangle|^{2}}{\|x\|^{2}}$$

and thus $|\langle y, x \rangle|^2 \leqslant ||y||^2 ||x||^2$.

(ii) $||x||_X := \sqrt{\langle x, x \rangle}$ defines a norm on X (the norm *induced* by the inner product).

Proof. Homogeneity and positive definiteness for $x \neq 0$ follow directly from the properties of $\langle \cdot, \cdot \rangle$. Moreover,

$$||x+y||^{2} = ||x||^{2} + ||y||^{2} + 2\operatorname{Re}(\langle x, y \rangle) \leq ||x||^{2} + ||y||^{2} + 2|\langle x, y \rangle|$$

$$\leq ||x||^{2} + ||y||^{2} + 2||x|| ||y|| = (||x|| + ||y||)^{2},$$

where the second inequality is the Cauchy-Schwarz inequality.

(iii)
$$||x+y||_X^2 + ||x-y||_X^2 = 2||x||_X^2 + 2||y||_X^2$$
 for all $x, y \in X$ (Parallelogram Law).

Proof. The identity follows immediately after multiplying out the left side, since the cross-term $\operatorname{Re}(\langle x, y \rangle)$ appears in the second summand with the opposite sign. \Box