

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald

FUNCTIONAL ANALYSIS

TUTORIAL 9

Problem 1. Let $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ be a Hilbert space and let $A \subset \mathcal{H}$ be a non-trivial closed linear subspace. Complete the proof of the Projection Theorem (Thm. 2.28), by showing that the orthogonal projection onto A is linear.

Problem 2 (Projections onto closed convex sets). Let \mathcal{H} be a Hilbert space, and let $\Sigma \subset \mathcal{H}$ be a non-empty closed convex subset.

(i) Prove that for all $x \in \mathcal{H}$ there exists a unique element $P_{\Sigma}(x) \in \Sigma$ such that

$$\operatorname{dist}(x,\Sigma) = \left\| x - P_{\Sigma}(x) \right\|.$$

[*Hint:* Pick an approximate sequence and prove that it is a Cauchy sequence by using the Parallelogram Law.]

- (*ii*) Prove that, if Σ is a non-empty closed linear subspace of \mathcal{H} , then P_{Σ} is the orthogonal projection onto Σ given by the Projection Theorem.
- (*iii*) Prove that, if $x \notin \Sigma$, then $P_{\Sigma}(x) \in \partial \Sigma$, and $\operatorname{dist}(x, \Sigma) = \operatorname{dist}(x, \partial \Sigma)$. [*Hint:* Use the continuity of the map $t \mapsto tx + (1-t)P_{\Sigma}(x)$.]
- (iv) Let $f \in C^1(\mathbb{R}, \mathbb{R})$ be convex and let $\Sigma \subset \mathbb{R}^2$ be given by

$$\Sigma := \left\{ (x, y) \in \mathbb{R}^2 \, \big| \, f(x) \leqslant y \right\}.$$

Prove that, for all $(a, b) \in \mathbb{R}^2$ with $(a, b) \notin \Sigma$, we have $P_{\Sigma}((a, b)) = (x, f(x))$, where $x \in \mathbb{R}$ satisfies the equation (b-f(x))f'(x) + a - x = 0.

(v) Find the projection of the point $(1, \frac{1}{2}) \in \mathbb{R}^2$ onto $\Sigma := \{(x, y) \in \mathbb{R}^2 \mid x^2 \leq y\}.$

Problem 3. Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space. Complete the proofs of Lemma 2.21, Lemma 2.22, and Remark 2.23 (2), i.e. prove the following statements:

- (i) $|\langle x, y \rangle| \leq ||x|| ||y||$ for all $x, y \in X$ (*Cauchy-Bunyakowsky-Schwarz inequality*). [*Hint:* Use the fact that $||\alpha x+y||^2 \geq 0$ with $\alpha = -\overline{\langle y, x \rangle}/\langle x, x \rangle$]
- (ii) $||x||_X := \sqrt{\langle x, x \rangle}$ defines a norm on X (the norm *induced* by the inner product).
- $(iii) \ \|x+y\|_X^2 + \|x-y\|_X^2 = 2\|x\|_X^2 + 2\|y\|_X^2 \text{ for all } x, y \in X \ (Parallelogram \ Law).$

Summer term 2016 June 13, 2016