

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 May 30, 2016

FUNCTIONAL ANALYSIS TUTORIAL 7

Problem 1 (Lemma 2.10). Let X, Y, and Z be normed spaces, and let $T : X \to Y$, and $S : Y \to Z$ be continuous linear maps. Prove:

- (i) $||T||_{B(X,Y)} = \sup \{ ||Tx||_Y | x \in X, ||x||_X = 1 \}.$
- (*ii*) $||Tx||_Y \leq ||T||_{B(X,Y)} ||x||_X$ for all $x \in X$.
- (*iii*) $||ST||_{B(X,Z)} \leq ||S||_{B(Y,Z)} ||T||_{B(X,Y)}$.

Problem 2. Let $(X, \|\cdot\|)$ be a Banach space, $x_0 \in X$, $m \in \mathbb{N}$, and let $T : X \to X$ be a bounded linear map with $\|T^m\|_{B(X)} < 1$. Prove that the equation

$$x - Tx = x_0$$

has a unique solution $x \in X$. [*Hint:* Consider the *m*-th power of the map $x \mapsto x_0 + Tx$.]

Problem 3 (Finite-dimensional norms are equivalent). Prove that, for each $N \in \mathbb{N}$ there exists $c_N > 0$ such that

$$p\left(\frac{1}{5}\right) \leqslant c_N \int_0^1 |p(x)| \, dx$$

for all polynomials $p : \mathbb{R} \to \mathbb{R}$ of degree at most N.

Problem 4 (Distance from a point to a set in a normed space). For $n \in \mathbb{N}$, consider the linear space P_n of real polynomials of degree at most n as a subset of $(C([-1, 1], \mathbb{R}), \|\cdot\|_{\infty})$. We will calculate the distance from the monomial $m_n : [-1, 1] \to \mathbb{R}, x \mapsto x^n$ to P_{n-1} .

- (i) For $n \in \mathbb{N}$ and $x \in [-1, 1]$, define $p_n(x) := \cos(n \arccos x)$. Prove that, for all $n \in \mathbb{N}$,
 - (a) $p_n(x) + p_{n-2}(x) = 2x p_{n-1}(x)$ for all $x \in [-1, 1]$, [*Hint:* Recall that $\cos(a) + \cos(b) = 2\cos(\frac{a+b}{2})\cos(\frac{a-b}{2})$.]
 - (b) $p_n 2^{n-1} m_n \in P_{n-1}$.
 - (c) If p is a polynomial with $||p||_{\infty} < ||p_n||_{\infty}$, then $\deg(p-p_n) \ge n$.
 - (d) If $p \in P_n$ is such that $p 2^{n-1}m_n \in P_{n-1}$, then $||p||_{\infty} \ge ||p_n||_{\infty}$.

(*ii*) Prove that, for all
$$n \in \mathbb{N}$$
, dist $(m_n, P_{n-1}) = 2^{-n+1}$