

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 May 23, 2016

FUNCTIONAL ANALYSIS TUTORIAL 6

Problem 1. Let (X, d) be a metric space. Recall, that for a subset $A \subset X$, the *distance* of a point $x \in X$ to A is defined by $dist(x, A) := \inf_{y \in A} d(x, y)$. Prove that for a subset $A \subset X$ the following statements are equivalent:

- (a) A is closed.
- (b) d(x, A) = 0 if and only if $x \in A$.

Problem 2. Let X be a normed space, and let $E, F \subset X$ be non-empty. Prove:

- (i) If E is open then E + F is open.
- (*ii*) If E is closed and F is compact, then E + F is closed.
- (*iii*) For E + F to be closed, it is generally not sufficient that E and F are closed.
- (iv) If E and F are compact, then E + F is compact.

Problem 3. For a metric space X, r > 0, and $x \in X$, let $B_r(x)$ denote the open ball and let $K_r(x)$ denote the closed ball in X (compare Tutorial 3, Problem 1).

- (i) Let (X, d) be a metric space. Prove that the following statements are equivalent:
 - (a) For all $x \in X$ and r > 0, we have $B_r(x) = K_r(x)$.
 - (b) For all $x, y \in X$ with $x \neq y$ and for all $\varepsilon > 0$, there exists $z \in X$ such that $d(y, z) < \varepsilon$ and d(x, z) < d(x, y).
- (ii) Let $(X, \|\cdot\|)$ be a normed space. Prove that $\overline{B_r(x)} = K_r(x)$ for all r > 0 and $x \in X$.

Problem 4. Prove that

$$c_{00} := \left\{ (x_n)_{n \in \mathbb{N}} \, \Big| \, x_n \in \mathbb{C} \text{ and } x_n = 0 \text{ for all but finitely many } n \in \mathbb{N} \right\}$$

is dense in $(\ell^p, \|\cdot\|_p)$ for $1 \leq p < \infty$.