

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 May 16, 2016

FUNCTIONAL ANALYSIS TUTORIAL 5

Problem 1. Let X, Y, and Z be topological spaces, and let $X \times Y$ be equipped with the product topology. Prove that, if $f : X \times Y \to Z$ is continuous, then it is separately continuous in each variable. Is the converse true?

[*Hint:* Compare with Problem 3 c) on Exercise Sheet 3.]

Problem 2. Let C([0,1]) be equipped with the metric d_{∞} (see Tutorial 4, Problem 1).

- (i) Find a bounded sequence in C([0, 1]) that does not admit a convergent subsequence.
- (*ii*) Prove that the space of polynomials on [0, 1] is not open in C([0, 1]).

Problem 3. For a topological space (X, \mathcal{T}) and a subset $A \subset X$, let \mathcal{T}_A denote the relative topology on A. Moreover, for a metric space (X, d), let \mathcal{T}_d denote the topology induced by d, and if $A \subset X$ is non-empty, let $d_A = d|_{A \times A}$ denote the induced metric on A. Prove:

- (i) If (X, d) is a metric space, and $A \subset X$ is non-empty, then $\mathcal{T}_{d_A} = \mathcal{T}_A$.
- (*ii*) If (X, \mathcal{T}) is a topological space, then a subset $A \subset X$ is compact in (X, \mathcal{T}) if and only if A is compact in (A, \mathcal{T}_A) .

Problem 4. Let (X, d) be a metric space. Prove that X is compact if and only if X is complete and pre-compact¹.

[*Hint:* Compare with the lecture, Theorem 1.49.]

¹Note that, in the literature, the meaning of *pre-compactness* is not consistent. Sets that we call *pre-compact* are sometimes referred to as *totally bounded* sets, while *pre-compact* is then used interchangeably with *relatively compact*.