

ANS- | | TÄT | | I | MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 May 2, 2016

FUNCTIONAL ANALYSIS TUTORIAL 3

Problem 1 (Open and closed balls). Let (X, d) be a metric space. Let $x \in X$, $\varepsilon > 0$ and let $B_{\varepsilon}(x)$ denote the ball of radius ε centered at x, i.e. $B_{\varepsilon}(x) := \{y \in X \mid d(x, y) < \varepsilon\}$.

- (i) Prove that $B_{\varepsilon}(x)$ is open.
- (*ii*) Prove that $K_{\varepsilon}(x) := \{y \in X \mid d(x, y) \leq \varepsilon\}$ is closed.
- (*iii*) Prove that $\overline{B_{\varepsilon}(x)} \subseteq K_{\varepsilon}(x)$.
- (iv) Give an example of a metric space, where generally $\overline{B_{\varepsilon}(x)} \neq K_{\varepsilon}(x)$.

Problem 2 (Product topology). Let (X, \mathcal{T}_Y) and (Y, \mathcal{T}_Y) be topological spaces, and let $\mathcal{T}_{X \times Y}$ denote the product topology on $X \times Y$. Prove:

- (i) Convergence in $(X \times Y, \mathcal{T}_{X \times Y})$ is coordinatewise, i.e. a sequence $((x_n, y_n))_{n \in \mathbb{N}}$ in $X \times Y$ converges to some $(x, y) \in X \times Y$, iff $x_n \to x$ in (X, \mathcal{T}_Y) and $y_n \to y$ in (Y, \mathcal{T}_Y) as $n \to \infty$.
- (*ii*) If \mathcal{B}_X is a base for \mathcal{T}_X and \mathcal{B}_Y is a base for \mathcal{T}_Y , then

$$\mathcal{B}_X \times \mathcal{B}_Y = \{ U \times Y \, | \, U \in \mathcal{B}_X, V \in \mathcal{B}_Y \}$$

is a base for $\mathcal{T}_{X \times Y}$.

- (*iii*) If (X, \mathcal{T}_Y) and (Y, \mathcal{T}_Y) are separable, then $(X \times Y, \mathcal{T}_{X \times Y})$ is separable.
- (*iv*) If (X, \mathcal{T}_Y) and (Y, \mathcal{T}_Y) are first/second countable, then $(X \times Y, \mathcal{T}_{X \times Y})$ is first/second countable.