

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 Apr 25, 2016

FUNCTIONAL ANALYSIS TUTORIAL 2

Problem 1. Let X be a non-empty set and let \mathcal{T}_0 be the trivial/indiscrete topology on X, and \mathcal{T}_d the discrete topology on X. Prove that in (X, \mathcal{T}_0) every sequence converges to all points in X, and that in (X, \mathcal{T}_d) all convergent sequences are eventually constant.

Problem 2 (Hausdorff spaces). Let (X, \mathcal{T}) be a Hausdorff space. Prove:

- (i) The limit of a convergent sequence in X is unique.
- (*ii*) For each $x \in X$ the singleton $\{x\}$ is closed.

Problem 3. Let (X, \mathcal{T}) be a topological space, and let $E, F \subset X$.

- (i) Prove that if $E \subset F$ then $\mathring{E} \subset \mathring{F}$ and $\overline{E} \subset \overline{F}$.
- (ii) Prove that $\overline{E \cap F} \subset \overline{E} \cap \overline{F}$ and give an example for strict inclusion.
- (*iii*) Let $(x_k)_{k\in\mathbb{N}}$ be a sequence in E that converges to some $x \in X$. Prove that $x \in \overline{E}$.

Problem 4.

(a) Consider the following subsets of \mathbb{R} :

$$A := [0, 1), \quad B := \mathbb{Q}, \quad C := \left\{ \frac{1}{n} | n \in \mathbb{N} \right\} \cup (2, 3].$$

Determine

- (i) all interior points,
- (*ii*) all adherent points,
- (*iii*) all limit points,
- (iv) and all boundary points

of the given sets A, B, and C. What are the closure and the interior of A, B, and C?

(b) Consider the following topological spaces $X \subset \mathbb{R}$ equipped with the relative topology \mathcal{T}_X induced by the Euclidean topology on \mathbb{R} :

$$(v) \ X = [0,1] \cup [2,3],$$

(vi) $X = \mathbb{Q}$.

Produce a non-trivial subset of X which is both, open and closed.