

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. T. Ø. SØRENSEN PhD A. Groh, S. Gottwald Summer term 2016 Apr 18, 2016

FUNCTIONAL ANALYSIS TUTORIAL 1

Problem 1 (Trivial topology). Let X be a non-empty set and let $\mathcal{T}_0 := \{\emptyset, X\}$ be the trivial (or *indiscrete*) topology on X.

- (i) Find the closure $\overline{A} \subset X$ with respect to \mathcal{T}_0 of a subset $A \subset X$.
- (*ii*) Prove that for any topological space (Y, \mathcal{T}) , any map $f : (Y, \mathcal{T}) \to (X, \mathcal{T}_0)$ is continuous.
- (*iii*) Let \mathcal{T} be a topology on X that is *not* trivial. Decide whether the identity maps $id_1: (X, \mathcal{T}_0) \to (X, \mathcal{T})$ and $id_2: (X, \mathcal{T}) \to (X, \mathcal{T}_0)$ are continuous.

Problem 2 (Discrete topology). Let X be a non-empty set and let $\mathcal{T}_d := \mathcal{P}(X) = 2^X$ be the discrete topology on X, i.e. the topology consisting of all subsets of X.

- (i) Prove that (X, \mathcal{T}_d) is a Hausdorff space.
- (*ii*) Find the closure $\overline{A} \subset X$ with respect to \mathcal{T}_d of a subset $A \subset X$.
- (*iii*) Prove that for any topological space (Y, \mathcal{T}) , any map $f : (X, \mathcal{T}_d) \to (Y, \mathcal{T})$ is continuous.
- (iv) Prove that if \mathcal{T} is a topology on X that contains all singletons, i.e. $\{x\} \in \mathcal{T}$ for all $x \in X$, then $\mathcal{T} = \mathcal{T}_d$.
- (v) Let \mathcal{T} be a topology on X that is *not* discrete. Decide whether the identity maps $id_1: (X, \mathcal{T}_d) \to (X, \mathcal{T})$ and $id_2: (X, \mathcal{T}) \to (X, \mathcal{T}_d)$ are continuous.

Problem 3 (Relative topology). Let (X, \mathcal{T}) be a topological space, let $Y \subset X$ be a subset, and let \mathcal{T}_Y denote the relative topology on Y induced by \mathcal{T} .

- (i) Prove that Y is open in (X, \mathcal{T}) , i.e. $Y \in \mathcal{T}$, if and only if all open sets in (Y, \mathcal{T}_Y) are open in (X, \mathcal{T}) , i.e. $\mathcal{T}_Y \subset \mathcal{T}$.
- (ii) Prove the statement in (i) where *open* is replaced by *closed*.
- (*iii*) Let $Z \subset X$ be another subset. Prove that if $U \subset Y$ is open in (Y, \mathcal{T}_Y) , then $U \cap Z$ is open in $(Y \cap Z, \mathcal{T}_{Y \cap Z})$.
- (*iv*) Let $Z \subset X$ and assume that $U \subset Y \cap Z$ is open in (Y, \mathcal{T}_Y) and (Z, \mathcal{T}_Z) . Prove that U is open in $(Y \cup Z, \mathcal{T}_{Y \cup Z})$, i.e. $\mathcal{T}_Y \cap \mathcal{T}_Z \subset \mathcal{T}_{Y \cup Z}$.

For general informations please visit http://www.math.lmu.de/~gottwald/16FA/