Functional Analysis

Prof. Martin Fraas, PhD

August 29, 2015

Lecture:

Contents

Contents

1 Historical Perspective 3
2 Normed Linear Spaces 6
2.1 Linear Spaces 6
2.2 Normed Spaces 7
2.3 Banach Spaces 9
2.4 Inner Product Spaces 12
2.5 Hilbert Spaces 13
2.6 The Dual Space to a Hilbert Space 15
2.7 Bases of Hilbert Spaces - Motivation 16
2.8 Digression: Zorn's Lemma 16
2.9 Digression: Infinite Sums 17
2.10 Bases of Hilbert Spaces 18
2.11 [Digression] Applications 20
2.11.1 Measure theory 20
2.11.2 Fourier transform 21
3 Bounded Operators 23
3.1 Bounded Linear Maps 23
3.2 Digression: Unbounded operators 25
3.3 The Dual Space of a ℓ^{p}-Space 25
3.4 Hahn-Banach Theorem 27
3.5 Reflexive Spaces 29
3.6 The Conjugate of an Operator 30
3.7 Compact Operators 31
3.8 Weak Topology and Weak Convergence 34
4 Theorems 40
4.1 Alaoglu Theorem and its Corollaries 40
4.2 [Digression] Existence of Solutions to Partial Differential Equations 40
4.3 Baire Category Theorem and its Corollaries 43
4.4 Open Mapping Theorem and its Corollaries 49
4.4.1 Application 1: Hellinger-Toeplitz theorem 52
4.4.2 Application 2: Projections on Banach spaces 52
5 Spectral Theory 55
5.1 The Spectrum of an Operator 55
5.2 Applications of Spectral Theory 56
5.2.1 Overview 56
5.2.2 (A) Functional Calculus 56
5.2.3 (B) Diagonalization 56
5.2.4 (A) Functional Calculus 56
5.2.5 (C) Transformation to Canonical Form 57
5.2.6 Overview 57
5.2.7 General Theory 57
5.2.8 (B) Diagonalization 58
5.3 Spectral Theory of Compact Operators 59
5.3.1 Introduction 59
5.3.2 Spectral Theory of Compact Operators 60
5.3.3 Fredholm alternative 61
List of Symbols 63
Index 63

Roots:

Figure 1: History of functional analysis
What is functional analysis?

- Study of functional dependencies between (topological) spaces
- Study of spaces of functions
- Language of PDF / calculus of cariations, numerical analysis
- Language of quantum mechanics

Shift in mathematics between $19^{\text {th }} / 20^{\text {th }}$ century:

- Volterra's speech on 1900 International Congress of Mathematicians in Paris: " $19^{\text {th }}$ cenutry math is about the study of a single function."
I.e. definition of a function, continuity, differentiability
- Typical $19^{\text {th }}$ century math:

Theorem 1.1 (Weierstrass 1872). A function $f(x)=\sum_{n=0}^{\infty} a^{n} \cos \left(b^{n} \pi x\right), 0<a<1, b \in\{2 n+1 \mid n \in \mathbb{N}\}$ is continuous but nowhere differentiable.

- Special functions:
- Bessel function: $J_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\cdot \Gamma(n+\alpha+1)}\left(\frac{x}{2}\right)^{2 n+\alpha}$
- Hermite polynomial: $H_{n}(x)=(-1)^{n} \mathrm{e}^{+x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}}$
- Functional analysis shifted the view to the study of sets of functions:
definition of continuity \longrightarrow properties of sets of continuous functions
First theorem: Arzela-Ascoli theorem (coming soon).

Example 1.2 (temperature distribution on an infinite slab).

We guess

$$
T:]-\frac{\pi}{2},+\frac{\pi}{2}[\rightarrow] 0, \infty\left[, \quad T(x, y)=\sum_{n=0}^{\infty} x_{n} \mathrm{e}^{-(2 n+1) y} \cos ((2 n+1) x)\right.
$$

this automatically satisfies (0) and (1). For (b) we get the equation

$$
\left.1=\sum_{n=0}^{\infty} x_{n} \cos ((2 n+1) x), \quad x \in\right]-\frac{\pi}{2},+\frac{\pi}{2}[
$$

By subsequent differentiating and putting $x=0$ we get:

$$
\begin{align*}
& 1=x_{0}+3^{0} x_{1}+7^{0} x_{2}+\ldots \\
& 0=x_{0}+3^{2} x_{1}+7^{2} x_{2}+\ldots \\
& 0=x_{0}+3^{4} x_{1}+7^{4} x_{2}+\ldots
\end{align*}
$$

We got a set of equations of the form:

$$
\sum_{n=1}^{\infty} a_{n m} x_{m}=y_{n} \quad \text { i.e. } \quad\left(\begin{array}{ccc}
a_{11} & a_{12} & \cdots \tag{*}\\
a_{21} & a_{22} & \\
\vdots & & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots
\end{array}\right)
$$

Problem:

$$
\sum_{n=1}^{\infty} a_{n m} x_{m}=y_{n}, \quad a_{n m}, y_{n} \in \mathbb{F}(=\mathbb{R} \text { or } \mathbb{C}) \text { given, } \quad x_{m} \text { unknown }
$$

How to solve it: $19^{\text {th }}$ century: finite approximations:

$$
\text { pick } N: \quad N \text {-th approximation } \sum_{n=1}^{N} a_{n m} x_{m}^{(N)}=y_{n}, n=1, \ldots, N \quad \Longrightarrow \quad \operatorname{get} x_{m}^{(N)} \underset{n \rightarrow \infty}{\text { take }} \quad x_{m}
$$

Example 1.3.

Consider the following system:

$$
\begin{aligned}
x_{1}+x_{2}+\ldots & =1 \\
x_{2}+x_{3}+\ldots & =1 \\
x_{3}+x_{4}+\ldots & =1
\end{aligned}
$$

Then:

$$
\begin{aligned}
\text { for odd } N \text { : } & x^{(N)}=(1,0,1,0, \ldots) \\
\text { for even } N: & x^{(N)}=(0,1,0,1, \ldots)
\end{aligned}
$$

By looking: $x=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \ldots\right)$.

Options one can encounter:
(A) $x^{(N)}$ does converge, and the limit is a solution of eq. $(*)$
(B) $x^{(N)}$ does not converge, but eq. (*) has a solution
(C) $x^{(N)}$ does not converge, and eq. $(*)$ has no solution
(D) $x^{(N)}$ does converge, but eq. (*) has no solution

Question: What is the problem we are facing?
Recall that we studied equations

$$
\sum_{m=1}^{\infty} a_{n m} x_{m}=y_{n} \quad \leftrightarrow \rightsquigarrow \quad A x=y
$$

Here is one more example that leads to such an equation:
Example 1.4 (Volterra equation). Let $K:[0,1] \times[0,1] \rightarrow \mathbb{R}$ and $g:[0,1] \rightarrow \mathbb{R}$ be continuous functions. The Volterra equation is:

$$
\begin{aligned}
& \text { Volterra equation of } 1^{\text {st }} \text { kind: } \quad \int_{0}^{s} K(s, t) \cdot f(t) \mathrm{d} t=g(s) \\
& \text { Volterra equation of } 2^{\text {nd }} \text { kind: } \quad f(s)-\int_{0}^{s} K(s, t) \cdot f(t) \mathrm{d} t=g(s)
\end{aligned}
$$

Riemann integration: Divide $[0,1]$ into N subintervals, $t_{n}^{(N)}=\frac{n}{N}, n=0, \ldots, N$:

$$
\int_{0}^{t_{n}^{(N)}} K\left(t_{n}^{(N)}, t\right) f(t) \mathrm{d} t=\sum_{m=1}^{N} K\left(t_{n}^{(N)}, t_{m}^{(N)}\right) f\left(t_{m}^{N)}\right) \frac{1}{N}+o\left(\frac{1}{N}\right)
$$

Volterra equation of $1^{\text {st }}$ kind:

$$
\begin{array}{ccl}
a_{11}^{(N)} x_{1}^{(N)}+a_{12}^{(N)} x_{2}^{(N)}+\cdots+a_{1 N}^{(N)} x_{N}^{(N)}=y_{1}^{(N)} & a_{n m}^{(N)}=K\left(t_{n}^{(N)}, t_{m}^{(N)}\right) \frac{1}{N} \\
a_{21}^{(N)} x_{1}^{(N)}+a_{22}^{(N)} x_{2}^{(N)}+\cdots+a_{2 N}^{(N)} x_{N}^{(N)}=y_{2}^{(N)} & x_{m}^{(N)}=f\left(t_{m}^{(N)}\right) \\
\vdots & \vdots & \vdots \\
a_{N 1}^{(N)} x_{1}^{(N)}+a_{N 2}^{(N)} x_{2}^{(N)}+\cdots+a_{N N}^{(N)} x_{N}^{(N)}=y_{N}^{(N)} & y_{n}^{(N)}=g\left(t_{n}^{(N)}\right)
\end{array}
$$

Now:

$$
\left.\sum_{m=1}^{\infty} a_{n m}^{(N)} x_{m}^{(N)}=y_{n}^{(N)}, \quad x_{\lfloor t N\rfloor}^{(N)} \xrightarrow{N \rightarrow \infty} f(t), t \in\right] 0,1[
$$

Historical perspective - overview:

$$
\begin{array}{lll}
\text { (1) } \quad \sum_{m=1}^{\infty} a_{n m} x_{m}=y_{n} & \text { is linear } A x=y & \text { where } x \text { an }\left(x_{n}\right)_{n=1}^{\infty} \\
\text { (2) } & \frac{\partial^{2}}{\partial x^{2}} u(x, y)+\frac{\partial^{2}}{\partial y^{2}} u(x, y)=0 & \text { is linear } A x=y \\
\text { (3) } & \int_{0}^{s} K(s, t) f(t) \mathrm{d} t=g(s) & \text { is linear } A x=y
\end{array} \quad \text { where } x \text { an } u(x, y) f(t)
$$

Problems:
(1) Notion of solution
(2) Continuity with respect to data

Concerning the continuity with respect to data:
Prop. 1.5. Let $A(t)=\left(a_{i j}(t)\right)_{i, j=1}^{n}$ be a matrix that depends smoothly on t (smooth family), and vectors $y(t)=$ $\left(y_{j}(t)\right)_{j=1}^{n}$ smoothly on t. Suppose in addition $\forall t$: $\operatorname{ker} A(t)=\{0\}$. Then the solution $x(t)$ of $A(t) x(t)=y(t)$ depends smoothly on t.

Proof. Observe $\operatorname{det} A$ is a smooth function:

$$
\operatorname{det} A=\sum_{\pi}(-1)^{\operatorname{sgn} \pi} a_{1, \pi(1)} a_{2, \pi(2)} \ldots a_{n, \pi(n)}, \quad x_{j}=\frac{\operatorname{det}\|\cdot\|}{\operatorname{det} A(t)} \quad \therefore \quad \operatorname{det} A \text { is a smooth function }
$$

Chapters:

- Normed linear spaces, Banach spaces, Hilbert spaces
- Linear operators on Banach spaces, dual spaces
- little bit more topology
- Three big results in functional analysis: Hahn-Banach theorem, Banach-Steinhaus theorem, open mapping principle
- Geometry of Banach space
- Compact operators and spectrum

Furthermore, let in the following be $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$.

Normed Linear Spaces

2.1 Linear Spaces

Definition 2.1 (linear space). Set X equipped with two operations, on which two operations

$$
\begin{aligned}
\text { addition } & X \times X \rightarrow X,(x, y) \mapsto x+y \\
\text { multiplication by scalar } & \mathbb{F} \times X \rightarrow X,(\lambda, x) \mapsto \lambda \cdot x
\end{aligned}
$$

is called linear space over field \mathbb{F}, provided the following axioms are satisfied for any $x, y, z \in X$ and $a, b \in \mathbb{F}$: Group structure:

- associativity:

$$
\begin{aligned}
& (x+y)+z=x+(y+z) \\
& x+0=x \\
& x+(-x)=0 \\
& x+y=y+x
\end{aligned}
$$

- identity element:
- existence of inverses:
- commutativity:

Compatibility with field:

- compatibility of mul.: $a \cdot(b \cdot x)=(a b) \cdot x$
- compatibility of one: $1 \cdot x=x$
- distributivity I: $\quad a \cdot(x+y)=a \cdot x+a \cdot y$
- distributivity II: $\quad(a+b) \cdot x=a \cdot x+b \cdot x$

Example 2.2 (examples of linear spaces).

(1) Finite-dimensional euclidean space \mathbb{R}^{n} or \mathbb{C}^{n}
(2) Space of inifinite sequences $\left(x_{n}\right)_{n=1}^{\infty}, x_{n} \in \mathbb{F}$
(3) $\ell^{p}, p=\infty$, the space of all $\left(x_{n}\right)_{n=1}^{\infty}$ with $\sup _{n \in \mathbb{N}}\left|x_{n}\right|<\infty$, i.e. the space of all bounded sequences
(4) $\ell^{p}, p \in\left[1, \infty\left[\right.\right.$, the space of all $\left(x_{n}\right)_{n=1}^{\infty}$ with $\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{p}<\infty$
(5) $\ell^{p}, p \in\left[0,1\left[\right.\right.$, the space of all $\left(x_{n}\right)_{n=1}^{\infty}$ with $\sum_{n \in \mathbb{N}}\left|x_{n}\right|^{p}<\infty$
(6) Space $C([0,1])$ of continuous functions on the interval $[0,1]$
(7) Solutions of Volterra's equation
(8) Space of polynomials $p \in X$ if $\exists n \in \mathbb{N}: p(x)=\sum_{j=0}^{n} a_{j} x^{j}$

Proof that (4) in example 2.2 is a linear space.
If $\left(x_{n}\right)_{n}$ with $\sum_{n}\left|x_{n}\right|^{p}<\infty$ and $\left(y_{n}\right)_{n}$ with $\sum_{n}\left|y_{n}\right|^{p}<\infty$, then $\sum_{n}\left|x_{n}+y_{n}\right|^{p}<\infty$?

$$
\left|x_{n}+y_{n}\right|^{p} \leq\left|2 x_{n}\right|^{p}+\left|2 y_{n}\right|^{p} \leq 2^{p}\left(\left|x_{n}\right|^{p}+\left|y_{n}\right|^{p}\right) .
$$

Remark 2.3 (unit balls in ℓ^{p}). Further investigations of ℓ^{p}-spaces: normable?

unit ball for $p=\infty$

unit ball for $p=2$

unit ball for $p=1$

unit ball for $p=1 / 2$

Figure 2: Unit balls in ℓ^{p} for some $p \in[0, \infty]$

Definition 2.4 (linear subspace). $U \subseteq X$ is called linear subspace if $\forall x_{1}, x_{2} \in U, \lambda_{1}, \lambda_{2} \in \mathbb{F}: \lambda_{1} x_{1}+\lambda_{2} x_{2} \in U$.
Definition 2.5 (sum of subsets in vector spaces). If $S, T \subseteq X$ then $S+T:=\{z \in X \mid z=x+y, x \in S, y \in T\}$.
Theorem 2.6 (properties of linear subspaces).
(1) $\{0\}$ and X are linear subspaces.
(2) The intersection of any collection of subspaces is a subspace.
(3) The sum of any collection of subspaces a subspace.

Definition 2.7 (linear span). Given set $M \subseteq X$, the linear span $\operatorname{span}(M)$ is the intersection of all linear subspaces Y such that $M \subseteq Y$.

Theorem 2.8 (properties of the linear span).
(1) The linear span of M is the smallest linear subspace that includes M.
(2) $\operatorname{span}(M)$ consists precisely of the vectors $\sum_{j=1}^{n} \lambda_{j} x_{j}, n \in \mathbb{N}, x_{j} \in M, \lambda_{j} \in \mathbb{F}$.

Definition 2.9 (convex set). Only for $\mathbb{F}=\mathbb{R}$! K is convex set if for $x_{1}, x_{2} \in K$ and $\lambda_{1}, \lambda_{2} \in \mathbb{F}, \lambda_{1}+\lambda_{2}=1$ we have $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in X$.

2.2 Normed Spaces

Definition 2.10 (normed space). Let X be a linear space and $\|\cdot\|: X \rightarrow \mathbb{R}$ a map that satisfies:

(1)	non-negativity:	$\forall x \in X:$				
(2)	absolute homogenity:	$\forall x \in X, \lambda \in \mathbb{F}:$				
(3)	triangle inequality:	$\forall x\\|\geq x\\|=\|\lambda\| \cdot\\|x\\|$				
(4)	zero norm \Rightarrow zero vector:	$\forall x \in X:$				

Then $\|\cdot\|$ is called a norm on X, and $(X,\|\cdot\|)$ is called a normed space. On every normed space, we define a distance function d by:

$$
d: X \times X \rightarrow \mathbb{R}, d(x, y)=\|x-y\|
$$

Prop. 2.11 (norms are Lipshitz continuous). A norm $\|\cdot\|: X \rightarrow \mathbb{R}$ is uniformly continuous, and in fact even Lipshitz continuous.

Proof. We have $|\|x\|-\|y\|| \leq\|x-y\|$. Put $y=-x+z$ into (3) to get $|\|z\|-\|x\|| \leq\|z-x\|$.
Definition 2.12 (equivalence of norms). Let $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ be norms on a vector space X. They are called equivalent if

$$
\exists C>0: \quad C^{-1} \cdot\|\cdot\|_{2} \leq\|\cdot\|_{1} \leq C^{+1} \cdot\|\cdot\|_{2}
$$

or equivalent to this condition,

$$
\exists C, C^{\prime}>0: \quad C^{\prime} \cdot\|\cdot\|_{2} \leq\|\cdot\|_{1} \leq C \cdot\|\cdot\|_{2}
$$

Theorem 2.13 (equivalence of norms). Norms $\|\cdot\|_{1}$ and $\|\cdot\|_{2}$ are equivalent iff the topologies they generate are the same.

Proof.
Proof of " \Rightarrow ": Let $\mathcal{T}_{1}, \mathcal{T}_{2}$ be topologies. If $U \in \mathcal{T}_{1}$. $B_{r}^{(1)}:=\left\{x \mid\|x\|_{1}<r\right\}$. Then $B_{C^{-1} \delta}^{(2)} \subseteq$ $B_{\delta}^{(1)} \subseteq B_{C \delta}^{(2)}$.
Proof of " \Leftarrow ": $B_{1}^{(2)} \in \mathcal{T}_{2}$ if $T_{1}=T_{2}$ therefore $B_{C}^{(1)} \supseteq B_{1}^{(2)}$. Let $x \in X$. Then $\frac{x}{\|x\|_{2}} \in \overline{B_{1}^{(2)}}$. With $B_{C}^{(1)} \supseteq B_{1}^{(2)}$ it follows that $\left\|\frac{x}{\|x\|_{2}}\right\|_{1} \leq C$, and hence $\|x\|_{1} \leq C\|x\|_{2}$.

Theorem 2.14 (norms in finite-dim are equivalent). All norms on a finite dimensional space are equivalent.
Proof.
The one inequality. Let $\left\{e^{1}, \ldots, e^{n}\right\}$ be a basis of X, so for any $x \in X$ we have $x=x_{1} e^{1}+\ldots+x_{n} e^{n}$. Consider the infinity-norm $\|x\|_{\infty}=\max _{1 \leq j \leq n}\left|x_{j}\right|$. Let $\|\cdot\|$ be a different norm. Then

$$
\begin{aligned}
\|x\| & =\left\|x_{1} e^{1}+\ldots+x_{n} e^{n}\right\| \\
& \leq\left|x_{1}\right|\left\|e^{1}\right\|+\ldots+\left|x_{n}\right|\left\|e^{n}\right\| \\
& \leq\|x\|_{\infty} \cdot \underbrace{\left(\left\|e^{1}\right\|+\ldots+\left\|e^{n}\right\|\right)}_{=: C} .
\end{aligned}
$$

The other inequality. We observe that $\|\cdot\|$ is continuous in \mathcal{T}_{∞} (because $\|x\| \leq C \cdot\|x\|_{\infty}$). Let $S_{1}^{\infty}:=\left\{x \mid\|x\|_{\infty}=1\right\}$, then S_{1}^{∞} is compact, and hence a minimum exists, $\min _{x \in S_{1}^{\infty}}\|x\|=: \delta>0$ (where the latter inequality follows from $\left.0 \notin S_{1}^{\infty}\right)$. For any $x \in X$ we have $\frac{x}{\|x\|_{\infty}} \in S_{1}^{\infty}$, whereat

$$
\left\|\frac{x}{\|x\|_{\infty}}\right\| \geq \delta \quad \therefore \quad\|x\| \geq \delta\|x\|_{\infty}
$$

Theorem 2.15 (compactness of the closed unit ball). Closed unit ball $\overline{B_{1}}:=\{x \in X \mid\|x\| \leq 1\}$ is compact iff dimension of X is finite.

Proof of theorem 2.15 - part 1/2. If X is infinite-dimensional, then $\overline{B_{1}}$ is not compact.
Example 2.16. $\left(\ell^{\infty},\|\cdot\|_{\infty}\right)$, i.e. all bounded sequences, where $\|x\|_{\infty}=\sup _{j \in \mathbb{N}}\left|x_{j}\right|$. Then $\forall j:\left\|e^{j}\right\|_{\infty}=1$ and $\forall j \neq k$: $\left\|e^{j}-e^{k}\right\|_{\infty}=1$, where

$$
\begin{aligned}
& e^{1}=(1,0,0,0, \ldots) \\
& e^{2}=(0,1,0,0, \ldots) \\
& e^{3}=(0,0,1,0, \ldots)
\end{aligned}
$$

In particular $e^{1}, e^{2}, e^{3}, \ldots$ is neither convergent nor Cauchy.
Lemma 2.17 (existence of projections). Let U be a proper closed linear subspace of X. Then there exists $x \notin U$ with $\|x\|=1$ such that $\operatorname{dist}(x, U) \geq \frac{1}{2}$, where $\operatorname{dist}(x, U)=\inf _{y \in U}\|x-y\|$.

Proof.
Pick any $\tilde{x} \notin U$, then $\operatorname{dist}(\tilde{x}, U)=d>0$ (because U is closed). Pick $y_{0} \in U$ such that $\left\|\tilde{x}-y_{0}\right\|=2 d$. Claim ist that $x:=\frac{\tilde{x}-y_{0}}{2 d}$ satisfies the requirements. Clearly $\|x\|=1$. Let $y \in U$. Then

$$
\|x-y\|=\left\|\frac{\tilde{x}-y_{0}}{2 d}-y\right\|=\left\|\frac{\tilde{x}-y_{0}-2 d y}{2 d}\right\| \geq \frac{d}{2 d}=\frac{1}{2} .
$$

Since U is linear subspace $y_{0}+2 d y \in U$, and hence $\frac{\|\tilde{x}-z\| 2 d}{\geq} \frac{d}{2 d}=\frac{1}{2}$.

Remark 2.18.

Concering the $\operatorname{dist}(x, U)=\inf _{y \in U}\|x-y\|:$ There exists a sequence $y_{n} \in U$ such that $\left\|y_{n}-x\right\| \xrightarrow{n \rightarrow \infty} d$, in particular for any $\varepsilon>0$ there is a $y(\varepsilon)$ such that $\|y(\varepsilon)-x\| \leq d+\varepsilon$. If instead of $y(\varepsilon)$ you consider $\lambda y(\varepsilon), \varepsilon \mathbb{R}$.

$$
F(\lambda):=\|\lambda y(\varepsilon)-x\|, \lambda \in \mathbb{R}
$$

Proof of theorem 2.15-part 2/2. If X is infinite-dimensional, then $\overline{B_{n}}$ is not compact. We construct a sequence $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right), x_{j} \in X$ where x_{0} is arbitrary with $\left\|x_{0}\right\|=1$. Given $\left(x_{0}, \ldots, x_{n}\right)$ then consider span $\left\{x_{1}, \ldots, x_{n}\right\}=$: U (closed because of finite dimensional, and hence proper). Use the lemma to pick x_{n+1} such that $\forall j:\left\|x_{j}\right\|=1$ and $\forall j \neq k:\left\|x_{j}-x_{k}\right\| \geq \frac{1}{2}$.

Remark 2.19. We have a look at subspaces of $(c,\|\cdot\|)$:

$$
\begin{aligned}
\|x\| & =\max _{n \in \mathbb{N}}\left|x_{n}\right| \\
c_{0} & =\left\{\text { infinite real sequences }\left(x_{n}\right)_{n \in \mathbb{N}} \mid \lim _{n \rightarrow \infty} x_{n}=0\right\} \\
c_{\text {cpt }} & =\left\{\text { sequences }\left(x_{n}\right)_{n \in \mathbb{N}} \mid\left(x_{n}\right)_{n \in \mathbb{N}} \text { has only finitely many non-zero elements }\right\} \\
c_{\text {cpt }} & \text { is a proper subspace of } c
\end{aligned}
$$

Repitition:

- equivalent norms
- topologies
- finite-dimensional \Leftrightarrow all norms equivalent
- unit ball is not compact in infinite-dimensional spaces

Question: Suppose you have two topologies $\mathcal{T}_{1}, \mathcal{T}_{2}$ induces by norms $\|\cdot\|_{1},\|\cdot\|_{2} \ldots$

2.3 Banach Spaces

Definition 2.20 (Banach space). Banach space is a normed linear space that is complete.

Motivation: Why Banach?

- numerical analysis: $\quad \lim _{n \rightarrow \infty} x_{n}, \quad\left|x_{n}-x_{k}\right|<$ precision, $n, k \geq n_{0}$
- pure math: $\quad x_{n+1}=F\left(x_{n}, x_{n-1}\right), \lim _{n \rightarrow \infty} x_{n}=x \Leftrightarrow x=F(x, x)$

Example 2.21 (examples and counterexamples for banach spaces).
(1) c, the space of real/complex sequences $\left(x_{n}\right)_{n=1}^{\infty}$ such that $\lim _{n \rightarrow \infty} x_{n}$ exists. Equipped with norm $\left\|\left(x_{n}\right)_{n}\right\|=$ $\max _{n \in \mathbb{N}}\left|x_{n}\right|$ it is Banach.
(2) c_{0}, the space $c_{0} \subseteq c$ of sequences such that $\lim _{n \rightarrow \infty} x_{n}=0$. This is a closed subspace, hence a Banach space.
(3) c_{cpt}, the space $c_{\mathrm{cpt}} \subseteq c_{0}$ of sequences with finite number of non-zero elements.

Claim. c_{cpt} is a proper dense subspace of c_{0}.
Proof.
Proper: $x_{n}=\frac{1}{n}$.
Dense: Let $\left(x_{n}\right)_{n} \in c_{0}$ and pick ε. Find N such that $\left|x_{n}\right| \leq \varepsilon$ for $n \geq N$. Define $x_{n}^{(N)}=\left\{\begin{array}{c}x_{n} \text { for } n \leq N \\ 0 \text { for } n>N\end{array}\right.$. Clearly $\left(x_{n}^{(N)}\right)_{n} \in c_{\mathrm{cpt}}$. Furthermore $\left\|\left(x_{n}^{(N)}\right)_{n}-\left(x_{n}\right)_{n}\right\|=\max _{n}\left|x_{n}^{(N)}-x_{n}\right|=\max _{n \geq N}\left|x_{n}\right| \leq \varepsilon$.
(4) Let (M, d) be a metric space and $K \subseteq M$ be a compact set.
$C(K)$, the space of all continuous functions $f: K \rightarrow \mathbb{R}$.
Norm on this space: $\|f\|_{\infty}=\sup _{x \in K}|f(x)|$ (called the max-norm or sup-norm)
Concering the fourth example:
Question: If $f_{n} \in C(K)$ such that $\forall x \in K: \lim _{n \rightarrow \infty} f_{n}(x)=f(x)$, does it imply that $f \in C(K)$?
Negative answer: No!, take $f_{n}=x^{n}$.
Positive answer: Yes!, if $f_{n} \rightrightarrows f$. Recall:

$$
\begin{aligned}
f_{n} \rightarrow f & \Leftrightarrow & \forall x: \forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}:\left|f_{n}(x)-f(x)\right| \leq \varepsilon \\
f_{n} \rightrightarrows f & \Leftrightarrow & \forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: \forall x:\left|f_{n}(x)-f(x)\right| \leq \varepsilon \\
& \Leftrightarrow & \forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}: \max _{x \in K}\left|f_{n}(x)-f(x)\right| \leq \varepsilon \\
& \Leftrightarrow & \forall \varepsilon>0 \exists n_{0} \in \mathbb{N} \forall n \geq n_{0}:\left\|f_{n}-f\right\|_{\infty} \leq \varepsilon \\
& \Leftrightarrow & \left\|f_{n}-f\right\|_{\infty} \xrightarrow{n \rightarrow \infty} 0 .
\end{aligned}
$$

Remark 2.22 (convergence in sup-Norm $=$ uniform convergence). Notion if convergence w.r.t. the norm $\|\cdot\|_{\infty}$ is equivalent to the notation of uniform convergence.

Theorem $2.23\left(\left(C(K),\|\cdot\|_{\infty}\right)\right.$ is complete). $\left(C(K),\|\cdot\|_{\infty}\right)$ is a Banach space.
Proof. If $f_{n} \in C(K)$ Cauchy sequence, $\left\|f_{n}-f_{k}\right\|_{\infty}=\max _{x \in K}\left|f_{n}(x)-f_{k}(x)\right| \leq \varepsilon$ if $n, k \geq N$, then $f_{n} \longrightarrow f$. For each $x \in K$, then $f_{n}(x)$ is a Cauchy sequence, then $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ exists.
To show:
(a) $\left\|f_{n}-f\right\|_{\infty} \longrightarrow 0$
(b) $f \in C(K)$

Proof:
(a) Pick N from above. Then

$$
\begin{aligned}
\left\|f-f_{N}\right\|_{\infty} & =\max _{x \in K}\left|f(x)-f_{N}(x)\right| \\
& =\max _{x \in K} \lim _{n \rightarrow \infty}\left|f_{n}(x)-f_{N}(x)\right| \\
& \leq \sup _{x \in K} \sup _{n \geq N}\left|f_{n}(x)-f_{N}(x)\right| \\
& \leq \sup _{n \geq N} \sup _{x \in K}\left|f_{n}(x)-f_{N}(x)\right| \\
& \leq \varepsilon .
\end{aligned}
$$

(b) Fix N such that $\left|f(x)-f_{N}(x)\right| \leq \frac{\varepsilon}{3}$ and $\left|f(y)-f_{N}(y)\right| \leq \frac{\varepsilon}{3}$. Now since f_{N} continuous choose x, y such that $\left|f_{N}(x)-f_{N}(y)\right|<\frac{\varepsilon}{3}$ if $d(x, y)<\delta$. Then

$$
|f(x)-f(y)| \leq \underbrace{\left|f(x)-f_{N}(x)\right|}_{\leq \varepsilon / 3}+\underbrace{\left|f_{N}(x)-f_{N}(y)\right|}_{\leq \varepsilon / 3}+\underbrace{\left|f(y)-f_{N}(y)\right|}_{\leq \varepsilon / 3} \leq \varepsilon .
$$

What are compact subsets of $C(K)$?
Prop. 2.24 (characterization of relative compactness). The following is equivalent for subsets N of complete metric spaces:
(i) \bar{N} compact
(ii) Every sequence $\left(x_{n}\right)_{n \in \mathbb{N}}, x_{n} \in N$ has a convergent subsequence
(iii) For each $\varepsilon>0$ exists a finite number of $x_{j} \in N, j=1, \ldots, n$ such that $\bigcup_{j=1, \ldots, n} B_{\varepsilon}\left(x_{j}\right)=N$

Remark 2.25 (prequesits for Arzela-Ascoli). Let K be a compact set, and consider $\left(C(K),\|\cdot\|_{\infty}\right)$, and let $\mathcal{F} \subseteq C(K)$. Recall that:
$-\mathcal{F}$ is bounded if $\sup _{f \in \mathcal{F}}\|f\|_{\infty}<\infty$.
$-\mathcal{F}$ is called equicontinuous if

$\forall x: \forall \varepsilon>0 \exists \delta>0 \forall f \in \mathcal{F}: \forall y: d(x, y) \leq \delta \Rightarrow|f(x)-f(y)| \leq \varepsilon$.

Repitition:

- (relative) compactness
- Arzela-Ascoli theorem
- equicontinuity

Prop. 2.26 (continuous functions map compact sets to compact sets). Continuous functions map compact sets to compact sets. In particular, continuous function on a compact set attains its maxima/minima.

Motivation: Problem: Given function $f: K \rightarrow \mathbb{R}$, find $\min _{x \in K} f(x) . \rightarrow$ find a topology, that has so much open sets such that f is continuous, but so less open sets, such that K is compact.

Remark 2.27. Every finite set of continuous functions is equicontinuous.

Theorem 2.28 (Arzela-Ascoli). Let K be a compact set, and consider $\left(C(K),\|\cdot\|_{\infty}\right)$, and let $\mathcal{F} \subseteq C(K)$. Then \mathcal{F} is relatively compact, iff \mathcal{F} is equicontinuous and bounded.

Proof of \mathcal{F} relatively compact $\Rightarrow \mathcal{F}$ equicontinuous $\mathcal{\xi}$ bounded.
For any ε there are functions $\left\{f_{j}\right\}_{j=1}^{N(\varepsilon)}$ such that:

$$
\bigcup_{j=1}^{N(\varepsilon)} B_{\varepsilon}\left(f_{j}\right) \supseteq \mathcal{F}
$$

Let $f \in \mathcal{F}$ and pick x, then

$$
|f(x)-f(y)| \leq\left|f(x)-f_{j}(x)\right|+\left|f(y)-f_{j}(y)\right|+\left|f_{j}(x)-f_{j}(y)\right| \leq 3 \varepsilon
$$

where pick a j such that $\left\|f-f_{j}\right\| \leq \varepsilon$, and a δ such that $d(x, y) \leq \delta \Rightarrow\left|f_{j}(x)-f_{j}(y)\right| \leq \varepsilon$. Idea for bounded is similar.

Proof of \mathcal{F} relatively compact $\Leftarrow \mathcal{F}$ equicontinuous \mathcal{E} bounded.
We need to prove that given $f_{n} \in \mathcal{F}$, then there is a subsequence $f_{n(j)}$ such that $\lim _{j \rightarrow \infty} f_{n(j)}$ exists.

- $\exists f \in C(K):\left\|f-f_{n(j)}\right\| \longrightarrow 0$
- For j, k large $\left\|f_{n(k)}-f_{n(j)}\right\| \longrightarrow 0$ meaning that subsequence $f_{n(j)}$ is cauchy.

Steps (overview):

1. Find the covering $K \subseteq \bigcup_{z \in S} K_{r}(z)$, i.e. construct such $K_{r}(z)$'s and S.
2. Diagonal trick:

Consider $f_{n}(z)$ for $z \in S$. Then there is a $n(j)$ such that $f_{n(j)}(z)$ converges for all $z \in S$ (use boundness).
3. Use construction of S to prove that $f_{n(j)}(z)$ is Cauchy (use equicontinuity).

Steps (details):

1. Construction of $K_{\varepsilon}(z)$'s:

For each $\varepsilon>0$ and $z \in K$ define

$$
K_{\varepsilon}(z)=\{x \in K|\forall f \in \mathcal{F}| f(z)-f(x) \mid \leq \varepsilon\}
$$

Because \mathcal{F} is equicontinuous, $K_{\varepsilon}(z)$ is nonempty and open, and $K \subseteq \bigcup_{z \in K} K_{\varepsilon}(z)$.
Construction of S :
Pick N such that $K \subseteq \bigcup_{z \in K} K_{1 / N}(z)$. Choose $K_{N} \subseteq K$ such that $K_{N}=\left\{z_{1}, \ldots, z_{n}\right\}$ discrete set and

$$
K \subseteq \bigcup_{z \in K} K_{1 / N}(z) \subseteq \bigcup_{z \in K_{N}} K_{1 / N}(z)
$$

Define $S:=\bigcup_{N \in \mathbb{N}} K_{N}$, then S is countable.
3. Claim: $f_{n(j)}$ constructed in step 2 is a Cauchy sequence.

Proof: For all $x \in K$ and $z \in S$ it holds that

$$
\left|f_{n(j)}(x)-f_{n(k)}(x)\right| \leq\left|f_{n(j)}(x)-f_{n(j)}(z)\right|+\left|f_{n(k)}(x)-f_{n(k)}(z)\right|+\left|f_{n(j)}(z)-f_{n(k)}(z)\right|
$$

Pick $N>0$ and $z \in K_{N}$ such that $\left|f_{n(j)}(x)-f_{n(j)}(z)\right| \leq \frac{1}{N}$ for all j. Pick j, k such that $\left|f_{n(j)}(z)-f_{n(k)}(z)\right| \leq \frac{1}{N}$. Then for all x there exists N, n_{0} such that

$$
j, k \geq n_{0} \Rightarrow\left|f_{n(j)}(x)-f_{n(k)}(x)\right| \leq \frac{3}{N},
$$

and hence $\left\|f_{n(j)}-f_{n(k)}\right\| \leq \frac{3}{N}$.
2. Lemma (diagonal trick). Let S be a countable set and let $f_{n}(z), n \in \mathbb{N}$ be a sequence such that there is a $M>0$ with $\forall n \in \mathbb{N}, z \in S:\left|f_{n}(z)\right| \leq M$. Then there exists a subsequence $n(j)$ such that $f_{n(j)}(z)$ is convergent for all $z \in S$.
Proof. Since S is countable, $S=\left\{z_{1}, z_{2}, \ldots\right\}=\left\{z_{m}\right\}_{m \in \mathbb{N}}$. Then we have sequences $f_{n}\left(z_{m}\right)$. Because the sequence $\left\{f_{n}\left(z_{1}\right)\right\}_{n \in \mathbb{N}}$ is bounded, there is a subsequence $n_{1}(j)$ such that $f_{n_{1}(j)}\left(z_{1}\right)$ is convergent, and there is a subsequence $n_{2}(j)$ of $n_{1}(j)$ such that $f_{n_{2}(j)}\left(z_{2}\right)$ is convergent, and so on. Continuing this process, you can find subsequence $n_{m}(j)$ such that $f_{n_{m}(j)\left(z_{k}\right)}$ converges for $k \leq m$.

Naive: Define $n_{\infty}(j):=\lim _{m \rightarrow \infty} n_{m}(j)$. It may happen that $\lim _{m \rightarrow \infty} n_{m}(1)=\infty$.
Correct: Pick a subsequence $n_{\infty}(j):=n_{j}(j)$. Claim is that $f_{n_{j}(j)}(z)$ is convergent for all $z \in S$.
Proof: Pick any z, let say $z=z_{100}$, then $f_{n_{j}(j)}$ is convergent, $n_{100}(j)$ is a subsequence for which $f_{n_{100}(j)}\left(z_{100}\right)$ is convergent.

This finishes the proof.

2.4 Inner Product Spaces

Definition 2.29 (inner product space). Let V be a linear space and $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ a map that satisfies

(1) non-negativity:	$\forall x \in V:$	$\langle x, x\rangle \geq 0$
(2) linear in $2^{\text {nd }}$ argument:	$\forall x, y \in V, \lambda \in \mathbb{C}:$	$\langle x, \alpha y\rangle=\alpha\langle x, y\rangle$
(3) linear in 2 ${ }^{\text {nd }}$ argument:	$\forall x, y, z \in V:$	$\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$
(4) hermitian:	$\forall x, y \in V:$	$\langle x, y\rangle=\overline{\langle y, x\rangle}$
(5)	definiteness:	$\forall x \in V:$

Then $\langle\cdot, \cdot\rangle$ is called a scalar product in V, and $(V,\langle\cdot, \cdot\rangle)$ is called a normed space. We claim:
(2') semilinear in $1^{\text {st }}$ argument: $\forall x, y \in V, \lambda \in \mathbb{C}: \quad\langle\alpha x, y\rangle=\bar{\alpha}\langle x, y\rangle$
(3') semilinear in $1^{\text {st }}$ argument: $\forall x, y, z \in V: \quad\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$
Furthermore, the scalarproduct $\langle\cdot, \cdot\rangle$ induces a norm $\|\cdot\|$ by

$$
\|\cdot\|: V \rightarrow \mathbb{R},\|x\|:=\sqrt{\langle x, x\rangle} .
$$

Example 2.30 (examples of inner product spaces).
(1) \mathbb{C}^{n} equipped with $\langle x, y\rangle=\sum_{j=1}^{n} \overline{x_{j}} \cdot y_{j}$ is an inner product space, and a Banach space.
(2) $C([0,1])$ equipped with $\langle f, g\rangle=\int_{0}^{1} \overline{f(x)} \cdot g(x) \mathrm{d} x$ is an inner product space, but not a Banach space.

Definition 2.31 (orthogonality).

Vectors x, y are orthogonal, $x \perp y$, if $\langle x, y\rangle=0$. A set of vectors $\left\{x_{j}\right\}_{j \in J}$ is called an orthonormal set, if they are mutually orthogonal and $\forall j \in J:\left\|x_{j}\right\|=1$.

The Pythagorean theorem states that, if $x \perp y$ then $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$. We generalize this statement.

Theorem 2.32 (Pythagoras theorem). Let $\left\{x_{j}\right\}_{j=1}^{\infty}$ be an orthonormal set and $x \in V$. Then

$$
\|x\|^{2}=\sum_{j=1}^{n}\left|\left\langle x_{j}, x\right\rangle\right|^{2}+\left\|x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\|^{2} .
$$

Proof. Notice that $\left(x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right) \perp x_{k}$:

$$
\left\langle x_{k}, x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\rangle=\left\langle x_{k}, x\right\rangle-\left\langle x_{k}, x\right\rangle=0
$$

Then use pythogorean relation $\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2}$ repeatly:

$$
\begin{aligned}
x & =\left(x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right)+\left(\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right) \\
\|x\|^{2} & =\left\|x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\|^{2}+\left\|\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\|^{2} \\
& =\left\|x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\| 2+\left\|x_{1}\left\langle x_{1}, x\right\rangle+\sum_{j=2}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\|^{2} \\
& =\left\|x-\sum_{j=1}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\| 2+\left|\left\langle x_{1}, x\right\rangle\right|^{2}+\left\|\sum_{j=2}^{n} x_{j}\left\langle x_{j}, x\right\rangle\right\|^{2}
\end{aligned}
$$

Corollary 2.33 (Bessel inequality). For any orthonormal set $\left\{x_{j}\right\}_{j=1}^{n}$ and vector $x \in V$, we so-called Bessel inequality holds, that is

$$
\|x\|^{2} \geq \sum_{j=1}^{n}\left|\left\langle x_{j}, x\right\rangle\right|^{2}
$$

Corollary 2.34 (Cauchy-Schwarz inequality). For all $x, y \in V$ it holds that

$$
\|x\| \cdot\|y\| \geq|\langle x, y\rangle|
$$

Proof of Cauchy-Schwarz - using Bessel inequality. For any $y \neq 0\left\{\frac{y}{\|y\|}\right\}$ is an orthonormal set. Bessel inequality implies

$$
\|x\|^{2} \geq\left|\left\langle\frac{y}{\|y\|}, x\right\rangle\right|^{2}=\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}} .
$$

Proof of Cauchy-Schwartz - typical proof. Suppose $\langle x, y\rangle \in \mathbb{R}$. Then for all $t \in \mathbb{R}$ we have that

$$
0 \leq\langle x-t y, x-t y\rangle=\|x\|^{2}-2 t\langle x, y\rangle+t^{2}\|y\|^{2} .
$$

This expression is minimal at $t=\frac{\langle x, y\rangle}{\|y\|^{2}}$, and so

$$
0 \leq\|x\|^{2}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}
$$

Every parallelogram, e.g. the one drawn on the righthand side, satisfies the identity

$$
|A B|^{2}+|B C|^{2}+|C D|^{2}+|D A|^{2}=|A C|^{2}+|B D|^{2}
$$

We transfer this identity to normed spaces (where it doesn't have to be true, cf. proposi-
 tion 2.35), and call it parallelogram identity:

$$
\forall x, y \in V:\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) .
$$

Prop. 2.35 (characterization of inner product spaces). Norm is associated to a scalar product, iff the parallelogram identity holds.

2.5 Hilbert Spaces

Definition 2.36 (Hilbert space). An inner product space complete in this norm is called a Hilbert space.
Example 2.37 (examples of Hilbert spaces).
(3) $L^{2}([0,1])$ of functions with $\int_{0}^{1}|f(x)|^{2} \mathrm{~d} x<0$, equipped with $\langle f, g\rangle:=\int_{0}^{1} \overline{f(x)} \cdot g(x) \mathrm{d} x$ is a Hilbert space.
(4) ℓ^{2} of sequences with $\sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty$, equipped with $\langle x, y\rangle:=\sum_{n=1}^{\infty} \overline{x_{n}} \cdot y_{n}$ is a Hilbert space.

Remark 2.38. No other ℓ^{p} spaces, except for ℓ^{2}, are Hilbert spaces.
Prop. 2.39 (product of Hilbert spaces). Let $\mathcal{H}_{1}, \mathcal{H}_{2}$ be two Hilbert spaces. Then $\mathcal{H}_{1} \times \mathcal{H}_{2}:=\left\{(x, y) \mid x \in \mathcal{H}_{1}, y \in \mathcal{H}_{2}\right\}$ is a Hilbert space with inner product $\left\langle\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\rangle=\left\langle x_{1}, x_{2}\right\rangle_{\mathcal{H}_{1}}+\left\langle y_{1}, y_{2}\right\rangle_{\mathcal{H}_{2}}$.

Remark 2.40. Preview: Decomposition of Hilbert spaces: " $\mathbb{R}^{2}=\mathbb{R}_{x} \times \mathbb{R}_{y}$ ".
Definition 2.41 (orthogonal complement). Let U be a linear subspace of \mathcal{H}. Then $U^{\perp}:=\{x \in \mathcal{H} \mid \forall y \in U: x \perp y\}$
Lemma 2.42 (properties of the orthogonal complement). U^{\perp} is linear subspace, and in fact it is a closed subspace.
Proof. Closed: Exercise. Linear: If $y_{1}, y_{2} \in U^{\perp}$, then also $\alpha y_{1}+\beta y_{2} \in U^{\perp}$. Pick $x \in U$, we need to prove

$$
\left\langle x, \alpha y_{1}+\beta y_{2}\right\rangle=\alpha\left\langle x, y_{1}\right\rangle+\beta\left\langle x, y_{2}\right\rangle=0
$$

Lemma 2.43 (existence of projections). Let U be a closed proper linear subspace of \mathcal{H} (Hilbert space), and $x \in \mathcal{H}$. Then there exists a unique $z \in U$ that minimizes $\|x-y\|$ for $y \in U$, i.e.

$$
\operatorname{dist}(x, U):=\inf _{y \in U}\|x-y\|=\|x-z\| .
$$

Proof. Let $d:=\inf _{y \in U}\|x-y\|$. And let z_{n} be a minimizing sequence, i.e. $\left\|x-z_{n}\right\| \xrightarrow{n \rightarrow \infty} d$, for example $\left\|x-z_{n}\right\|^{2}=$ $d^{2}+\frac{1}{n}$.
We are going to show that $\left(z_{n}\right)_{n \in \mathbb{N}}$ is Cauchy.

$$
\begin{aligned}
\left\|z_{n}-z_{m}\right\|^{2} & =\left\|\left(x-z_{m}\right)-\left(x-z_{n}\right)\right\|^{2} \\
& =2\left(\left\|x-z_{n}\right\|^{2}+\left\|x-z_{m}\right\|^{2}\right)-\left\|2 x-z_{n}-z_{m}\right\|^{2} \\
& =4 d^{2}+2\left(\frac{1}{n}+\frac{1}{m}\right)-4\left\|x-\frac{1}{2}\left(z_{n}+z_{m}\right)\right\|^{2} \\
& \leq 4 d^{2}+2\left(\frac{1}{n}+\frac{1}{m}\right)-4 d^{2} \\
& =2\left(\frac{1}{n}+\frac{1}{m}\right)
\end{aligned}
$$

Therefore the sequence is Cauchy.
Existance is done, now uniqueness. Let z and \tilde{z} be two minimizers, $\|x-z\|=\|x-\tilde{z}\|=d$. Use parallelogram identity on $x-z$ and $x-\tilde{z}$ yields $\|z-\tilde{z}\| \leq 0$.

Repitition:

- Inner product spaces, Hilbert spaces
- Bessel inequality, Pythogoras theorem
- orthogonal complement
- existence of projection

Lemma 2.44 (existence of projections - convex version). Let K be a closed convex set, $K \subseteq \mathcal{H}$. Then for each $x \in \mathcal{H}$, there exists a unique $y \in K$ that minimizes the distance of x to K.

Proof. Similar to proof of the same for linear subset K.
Example 2.45 (existence of projections - counterexample).
Lemma 2.44 is not true if we consider non-convex spaces.

Lemma 2.46 (projection lemma). Let $U \subseteq \mathcal{H}$ be a closed linear subspace. Then each point $x \in \mathcal{H}$ has a unique decompositon $x=z+w$ where $z \in U$ and $w \in U^{\perp}$.

Proof. Let $x \in \mathcal{H}$, then there exists a $z \in U$, such that $\operatorname{dist}(x, U)=\|z-x\|$. We have z, and put $w=x-z$. Claim $w \in U^{\perp}$. We know that for each $y \in U$ and $\alpha \in \mathbb{C}$:

$$
\begin{aligned}
\|x-z\|^{2} & \leq\|x-z-\alpha y\|^{2} \\
& =\langle x-z-\alpha y, x-z-\alpha y\rangle \\
& =\|x-z\|^{2}-\langle x-z, \alpha y\rangle-\langle\alpha y, x-z\rangle+\langle\alpha y, \alpha y\rangle \\
& =\|x-z\|^{2}-\alpha\langle x-z, y\rangle-\bar{\alpha} \overline{\langle x-z, y\rangle}+|\alpha|^{2}\|y\|^{2}
\end{aligned}
$$

Therefore:

$$
\begin{aligned}
& \forall y \in U \forall \alpha \in \mathbb{C}: \quad 0 \leq|\alpha|^{2}\|y\|^{2}-\alpha\langle x-z, y\rangle-\bar{\alpha} \overline{\langle x-z, y\rangle} \\
& \forall y \in U \forall \alpha=r \in \mathbb{R}: 0 \leq t^{2}\|y\|^{2}-2 t \operatorname{Re}\langle x-z, y\rangle
\end{aligned}
$$

Therefore $\operatorname{Re}\langle x-z, y\rangle=0$, and with $\alpha=i t$ it follows that $\langle w, y\rangle=\langle x-z, y\rangle=0$, and hence $w \in U^{\perp}$.
Prop. 2.47. For every closed linear subspace $U \subseteq \mathcal{H}$, the dirct sum $U \oplus U^{\perp}$ is isometric to \mathcal{H}, and an isometry is given by $(z, w) \mapsto z+w$.

Proof. $f(\alpha)=\|x-z-\alpha y\|^{2}, f^{\prime}(0)=0$.

2.6 The Dual Space to a Hilbert Space

Definition 2.48 (dual space). A map $\varphi: \mathcal{H} \rightarrow \mathbb{C}$ is called a linear functional, if it is a bounded linear map, i.e.:
(1) Linearity: $\forall x, y \in \mathcal{H}, \alpha \in \mathbb{C}: \varphi(x+\alpha y)=\varphi(x)+\alpha \varphi(y)$
(2) Boundedness: $\exists C \in \mathbb{R}:|\varphi(x)| \leq C\|x\|_{\mathcal{H}}$

The space of all linear functionals on \mathcal{H} is called the dual space \mathcal{H}^{*} of \mathcal{H}. We equip \mathcal{H}^{*} with a norm $\|\cdot\|_{\mathcal{H}^{*}}$,

$$
\|\varphi\|_{\mathcal{H}^{*}}:=\sup _{x \in \mathcal{H},\|x\|=1}|\varphi(x)|=\sup _{x \in \mathcal{H}, x \neq 0} \frac{|\varphi(x)|}{\|x\|}
$$

Remark 2.49. Remark by the typesetter: This definition holds for any normed space, not just Hilbert spaces. Anyway, the more general definition will come in definition 3.6. Furhtermore, the norm $\|\cdot\|_{M^{*}}$ conincides with the operator norm $\|\cdot\|_{M \rightarrow \mathbb{F}}$.

Remark 2.50 (kernel of linear functional is a hyperplane). Hyperplanes in \mathbb{R}^{n} can be denoted by $a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=$ 0 where $a_{j} \in \mathbb{R}$. Given any φ, the solution of $\varphi(x)=0$ forms a hyperplane.

Prop. 2.51 (properties of dual spaces). If \mathcal{H} is a Hilbert space, then \mathcal{H}^{*} is a Banach space, and in fact it is a Hilbert space.

Example 2.52 (examples for dual spaces).
(1) For $\mathcal{H}=L^{2}([0,1])$, for any $g \in L^{2}([0,1]), \varphi(f)=\int_{0}^{1} g(x) f(x) \mathrm{d} x$.

We generalize example 2.52 to arbitrary Hilbert spaces.
Lemma 2.53 (every vector induces a linear functional). Let \mathcal{H} be an arbitrary Hilbert space. Then any $y \in \mathcal{H}$ induces a linear function φ_{y} by $\varphi_{y}(x)=\langle y, x\rangle$.

Proof. Bounded because of Cauchy-Schwarz,

$$
\left|\varphi_{y}(x)\right|=|\langle y, x\rangle| \leq\|y\|\|x\| \quad \therefore \quad \sup _{\|x\|=1}\left|\varphi_{y}(x)\right| \leq\|y\| .
$$

Other way to see boundness:

$$
\mathcal{N}:=\operatorname{ker} \varphi_{y}(x):=\left\{x \in \mathcal{H} \mid \varphi_{y}(x)=0\right\}=\operatorname{span}(y)^{\perp}
$$

Because $\mathcal{H}=\mathcal{N}+\mathcal{N}^{\perp}$, we can decompose any $x \in \mathcal{H}$ into $x=\alpha y+w$.

$$
\begin{aligned}
\varphi_{y}(x) & =\langle y, \alpha y+w\rangle=\alpha\|y\|^{2} \\
\|x\|^{2} & =|\alpha|^{2}\|y\|^{2}+\|w\|^{2}
\end{aligned}
$$

$w=0$ and $\alpha=\frac{1}{\|y\|}$ implies $\|x\|=1$.

$$
\begin{aligned}
\varphi_{y}(x) & =\frac{1}{\|y\|}\|y\|^{2}=\|y\| \\
\sup _{\|x\|=1} \varphi_{y}(x) & \geq \varphi_{y}(x)=\|y\|
\end{aligned}
$$

Theorem 2.54 (every linear functional is induced by a vector $=$ Riesz representation theorem). Let $\varphi \in \mathcal{H}^{*}$. Then there is a unique $y_{\varphi} \in \mathcal{H}$ such that $\forall x \in \mathcal{H}: \varphi(x)=\left\langle y_{\varphi}, x\right\rangle$. Furthermore, $\|\varphi\|_{\mathcal{H}^{*}}=\left\|y_{\varphi}\right\|_{\mathcal{H}}$.

Proof. Let $N=\operatorname{ker} \varphi=\{x \in \mathcal{H} \mid \varphi(x)=0\}$. Then \mathcal{N} is closed linear subspace (closed follows from boundness of φ, more explicit proof later). If $\mathcal{N}=\mathcal{H}$ then $\varphi=0$ and $y_{\varphi}=0$. Suppose that $\mathcal{N} \neq \mathcal{H}$. It follows by the projection lemma that there exists a $w_{0} \in \mathcal{N}^{\perp}$, then we can write a decomposition,

$$
x=\underbrace{\left(x-\frac{\varphi(x)}{\varphi\left(w_{0}\right)} w_{0}\right)}_{=: y \in \mathcal{N}}+\underbrace{\frac{\varphi(x)}{\varphi\left(w_{0}\right)} w_{0}}_{\in \mathcal{N}^{\perp}}
$$

where $y \in \mathcal{N}$ follows by

$$
\varphi(y)=\varphi\left(x-\frac{\varphi(x)}{\varphi\left(w_{0}\right)} w_{0}\right)=\varphi(x)-\varphi(x)=0
$$

All functionals $\alpha\left\langle w_{0}, x\right\rangle, \alpha \in \mathbb{C}$. We need to just find the $\alpha \in \mathbb{C}$ such that $\varphi\left(w_{0}\right)=\alpha\left\langle w_{0}, w_{0}\right\rangle$. Hence $\alpha=\frac{\varphi\left(w_{0}\right)}{\left\|w_{0}\right\|^{2}}$. Claim is that $\varphi_{y}(x)=\left\langle\frac{\varphi\left(w_{0}\right)}{\left\|w_{0}\right\|^{2}} w_{0}, x\right\rangle$, i.e. $y_{\varphi}=\frac{\varphi\left(w_{0}\right)}{\left\|w_{0}\right\|^{2}} w_{0}$.
Uniqueness: Suppose we have y_{φ} and \tilde{y}_{φ} that satisfy the lemma. Then $\forall x \in \mathcal{H}:\left\langle y_{\varphi}-\tilde{y}_{\varphi}, x\right\rangle=0$, in particular $x=y_{\varphi}-\tilde{y}_{\varphi}$, therefore $\left\|y_{\varphi}-\tilde{y}_{\varphi}\right\|^{2}=0$, and hence $y_{\varphi}=\tilde{y}_{\varphi}$.

Corollary 2.55 (norm of induced functional). In particular it follows from theorem 2.54 that

$$
\forall y \in \mathcal{H}:\left\|\varphi_{y}\right\|_{\mathcal{H}^{*}}=\|y\|_{\mathcal{H}} \quad \text { and } \quad \forall \varphi \in \mathcal{H}^{*}:\|\varphi\|_{\mathcal{H}^{*}}=\left\|y_{\varphi}\right\|_{\mathcal{H}}
$$

Corollary $2.56\left(\mathcal{H}^{*}\right.$ is isomorphic to $\left.\mathcal{H}\right) . \mathcal{H}^{*}$ is isomorphic to \mathcal{H} : By lemma 2.53 and theorem 2.54 every vector $y \in \mathcal{H}$ corresponds to a linear functional $\varphi \in \mathcal{H}^{*}\left(\right.$ via $\left.y \mapsto \varphi_{y}\right)$, and vice versa. Furthermore, by corollary 2.55 this bijection ($y \mapsto \varphi_{y}$) is isometric.

Remark 2.57 (visualization of linear functionals in finite dimensions). Remark by the typesetter: This remark is written by the typesetter of the script, and is not part of the lecture itself, but it extends remark 2.50.
For the sake of imagination, we consider the Hilbert space $\left(\mathbb{R}^{n},\langle\cdot, \cdot\rangle\right)$. Let $\varphi \in\left(\mathbb{R}^{n}\right)^{*}$ be a linear functional. The level sets of $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are parallel hyperplanes. If we choose the levels to be equidistant (e.g. $0,1,2, \ldots$), then the levels sets are equidistant too. We can also think of these hyperplanes as wave fronts of a plane wave. By virtue of the Riesz representation theorem, φ corresponds to a vector $y \in \mathbb{R}^{n}$ such that $\forall x \in \mathbb{R}^{n}: \varphi(x)=\langle y, x\rangle$. This y stands orthogonal on the levels sets of φ, and points in the direction where φ increases. The longer y is, the narrower are the level sets, the shorter is the wavelength of the corresponding plane wave.

We can think of φ as a machine, that takes a vector $x \in \mathbb{R}^{n}$, computes the number of level sets that are pierced by x (where we consider only the level sets $0,1,2, \ldots$), and outputs this number as $\varphi(x)$. In particular $\varphi(y)=$ (number of level sets pierced by $y)=\|y\|^{2}$, because the levels sets have the distance $\frac{1}{\|y\|}$, and y is orthogonal to the level sets. Note that this is in accordance to $\varphi(y)=\langle y, y\rangle=\|y\|^{2}$.

For whom who study physics: The duality "linear functional $\varphi \in\left(\mathbb{R}^{3}\right)^{*} \leftrightarrow$ vector $y \in \mathbb{R}^{3}$ " is similar to the nature of light waves in physics. The levels sets of φ correspond to the wavefronts of the plane wave, and the vector y corresponds to the momentum vector of the wave (in appropriate units).

2.7 Bases of Hilbert Spaces - Motivation

We have Hilbert space \mathcal{H}. We pick any $e_{1} \in \mathcal{H}$ with $\left\|e_{1}\right\|=1$, then pick $e_{2} \in\left\{e_{1}\right\}^{\perp}$ with $\left\|e_{2}\right\|=1$, and continue. We get a sequence $\left(e_{1}, e_{2} \ldots, e_{n}, \ldots\right)$.
Remark: Index sets don't have to be countable, they can be any arbitrary set.
Remark: Hilbert spaces with countable many directions are called seperable, and otherwise not separable.

2.8 Digression: Zorn's Lemma

Definition 2.58 (partial order, linear order, upper bound, maximal element).

- A relation $x \preceq y$ on a set S is called partial order, if it is reflexive, transitive, and anti-symmetric (i.e. $x \preceq y \wedge y \preceq$ $x \Rightarrow x=y$).
- A set S is linearly ordered, if for each $x, y \in S$ either $x \preceq y$ or $y \preceq x$.
- An element $p \in S$ is called an upper bound of a subset $O \subseteq S$, if for each $x \in O$ it holds that $x \preceq p$.
- An element $m \in S$ is called maximal element, if for each $x \in S$ it holds that $m \preceq x \Rightarrow m=x$.

Example 2.59 (example for a partial order).
(1) $S=2^{X}$ and $A \preceq B: \Leftrightarrow A \subseteq B$.

Statement 2.60 (Axiom of Choice). Function $g: A \rightarrow$ set of sets. $A C$: Suppose that $\forall x \in A: g(x) \neq \emptyset$. Then exists a f with $\forall x \in A: f(x) \in g(x)$.

In Zeremlo-Fraenkl-set theory, equivalent to Axiom of Choice is Zorn's lemma:
Statement 2.61 (Zorn's lemma). Let (S, \leq) be a partial ordered set. Assume that each linearly ordered subset has an upper bound. Then each linearly ordererd subset has an upper bound that is a maximal element.

Figure 3: A partial ordered set S. Marked are two linearly ordered subsets O_{1}, O_{2} (as blue braces), two upper bounds of O_{1}, all four maximal elements of S.

Example 2.62 (applicability of Zorn's lemma for " \subseteq "). $\Sigma \subseteq 2^{X}$, suppose that Σ is closed on taking unions. We order it, $(\Sigma, \leq), A_{1} \leq A_{2}: \Leftrightarrow A_{1} \subseteq A_{2}$. Then each linearly ordered subset $\left\{A_{\alpha}\right\}_{\alpha}$ has upper bound $\bigcup_{\alpha} A_{\alpha}$.

2.9 Digression: Infinite Sums

Remark by the typesetter: This section was rewritten by the typesetter of the script, and hence does not correspond 1:1 to the lecture.

Definition 2.63 (infinite sums - definitions).

- Sum of a sequence (real analysis):

Let X be a normed space, and denote natural numbers by \mathbb{N}.
Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ be a sequence.
Define the sum $\sum_{n \in \mathbb{N}} x_{n}$ as the limit of the sequence $\left(\sum_{n=1}^{N} x_{n}\right)_{N \in \mathbb{N}} \in X^{\mathbb{N}}$, i.e. $\sum_{n \in \mathbb{N}} x_{i}=x$ iff

$$
\forall \varepsilon>0 \quad \exists N_{0} \in \mathbb{N} \quad \forall N \geq N_{0}: \quad\left\|\sum_{n=1}^{N} x_{n}-x\right\|<\varepsilon
$$

We say $\sum_{n \in \mathbb{N}} x_{n}$ is absolute convergent, iff $\sum_{n \in \mathbb{N}}\left|x_{n}\right|$ converges.

- Sum of a measureable function (measure theory):

Let Ω be countable set, denote counting measure by μ, consider measure space $(\Omega, \mathcal{P}(\Omega), \mu)$.
Let $\left(x_{\omega}\right)_{\omega \in \Omega} \in \mathbb{R}^{\Omega}$ be a measureable function.
Define the sum $\sum_{\omega \in \Omega} x_{\omega}$ as the integral $\int_{\omega \in \Omega} x_{\omega} \mu(\mathrm{d} \omega)$, i.e. $\sum_{\omega \in \Omega} x_{\omega}=x$ exists iff

$$
x=\underbrace{\int_{\omega}\left(x_{+}\right)_{\omega} \mu(\mathrm{d} \omega)}_{\text {always exists }}-\underbrace{\int_{\omega}\left(x_{-}\right)_{\omega} \mu(\mathrm{d} \omega)}_{\text {always exists }} \text { determined. }
$$

- Sum of a family (functional analysis):

Let X be a Banach space, and I an arbitrary set.
Let $\left(x_{i}\right)_{i \in I} \in X^{I}$ be a family.
We say $\sum_{i \in I} x_{i}=x$ iff

$$
\forall \varepsilon>0 \quad \exists F_{0} \subseteq I \text { finite } \quad \forall F \supseteq F_{0} \text { finite }: \quad\left\|\sum_{i \in F} x_{i}-x\right\|<\varepsilon
$$

We say $\sum_{i \in I} x_{i}$ is absolute convergent, iff $\sum_{n \in I}\left|x_{i}\right|$ converges.

Lemma 2.64 (infinite sums - equivalance of the definitions). In the notation of definition 2.63 (denote $(I):=\{i \in$ $\left.\left.I \mid x_{i} \neq 0\right\}\right)$:

$$
\begin{array}{ll}
\sum_{n \in \mathbb{N}} x_{n} \begin{array}{c}
\text { convergent, but not } \\
\text { absolute convergent }
\end{array} & \Rightarrow \forall x \in X \exists J: \mathbb{N} \rightarrow \mathbb{N} \text { bijection : } \sum_{n \in \mathbb{N}} x_{J(n)}=x \quad\left[\begin{array}{l}
\text { only for } \\
X=\mathbb{R}!
\end{array}\right] \\
\sum_{n \in \mathbb{N}} x_{n} \text { absolute convergent } & \Rightarrow \forall J: \mathbb{N} \rightarrow \mathbb{N} \text { bijection : } \sum_{n \in \mathbb{N}} x_{J(n)}=\sum_{n \in \mathbb{N}} x_{n} \\
\sum_{\omega \in \Omega} x_{\omega} \text { determined } & \Leftrightarrow \exists J: \mathbb{N} \rightarrow \Omega \text { bijection : } \sum_{n \in \mathbb{N}} x_{J(n)} \text { absolute } \text { convergent } \\
\sum_{x \in I} x_{i} \text { absolute convergent } & \Leftrightarrow \quad \exists J: \mathbb{N} \rightarrow(I) \text { bijection : } \sum_{n \in \mathbb{N}} x_{J(n)} \text { absolute } \text { convergent }
\end{array}
$$

Note that the latter " $\exists J: \mathbb{N} \rightarrow(I)$ bijection" says that, in this case, at most countable x_{i} 's are nonzero.

Prop. 2.65 (properties of the "functional analysis definition").
(a) If $\forall i \in I: x_{i} \geq 0$, then $\sum_{i \in I} x_{i}$ converges if and only if $\sup _{F \subseteq I \text { finite }} \sum_{i \in F} x_{i}<\infty$.
(b) If $\forall i \in I: x_{i} \geq 0$ and $\sum_{i \in I} x_{i}$ converges, then only countable many x_{i} 's are nonzero.

Proof. Proof of (b): Let $I_{n}=\left\{i \in I \left\lvert\, x_{i}>\frac{1}{n}\right.\right\}$. Then $\bigcup_{n \in \mathbb{N}} I_{n}=\left\{i \in I \mid x_{i}>0\right\}$. If the righthand side is uncountable, then there exists a N such that I_{N} is infinite. Then clearly $\sup _{F \subseteq I_{n}} \sum_{i \in F} x_{i}=\infty$.

2.10 Bases of Hilbert Spaces

Definition 2.66 (orthonormal basis). An orthonormal set $S=\left\{e_{\alpha}\right\}_{\alpha \in A}, e_{\alpha} \in \mathcal{H}$, then S is called an orthonormal basis, if any orthonormal set $S^{\prime} \subseteq S$ implies $S^{\prime}=S$.

Remark 2.67. An orthonormal basis don’t have to be a (linear algebra) basis of \mathcal{H}.
Theorem 2.68 (every Hilbert space has an orthonormal basis). Every Hilbert space has an orthonormal basis.
Proof. Let S_{1}, S_{2} be two orthonormal sets. We order them by inlusion, $S_{1} \leq S_{2}$ if $S_{1} \subseteq S_{2}$. (Set of all orthonormal sets, \leq) is a partially ordered set. Each linearly ordered chain $\left\{S_{\alpha}\right\}_{\alpha \in I}$ then $\bigcup_{\alpha \in I} S_{\alpha}$ is an upper bound. It follows with Zorn's lemma that there exists a maximal orthonormal set S. Being maximal means that if $S^{\prime} \subseteq S$ then $S^{\prime}=S$.

Theorem 2.69 (properties of orthonormal basis). Let $S=\left\{e_{\alpha}\right\}_{\alpha \in A}$ be an orthonormal basis. Then the following holds:
(1) Coordinate representation: Every vector $x \in \mathcal{H}$ can be represented as

$$
x=\sum_{\alpha \in A} e_{\alpha}\left\langle e_{\alpha}, x\right\rangle
$$

(2) Parseval identity: For every vector $x \in \mathcal{H}$, the so called Parseval identity holds,

$$
\|x\|^{2}=\sum_{\alpha \in A}\left|\left\langle e_{\alpha}, x\right\rangle\right|^{2} .
$$

(3) Let $\left(c_{\alpha}\right)_{\alpha \in A} \in \mathbb{F}^{A}$ be an arbitrary family. Then (both sums in the "functional analysis"-sense)

Proof. Let $F \subseteq A$ be a finite set, then by Bessel inequality, $\sum_{\alpha \in F}\left|\left\langle e_{\alpha}, x\right\rangle\right|^{2} \leq\|x\|^{2}$, and therefore

$$
\sum_{\alpha \in A}\left|\left\langle e_{\alpha}, x\right\rangle\right|^{2} \leq\|x\|^{2} \text { converges. }
$$

By virtue of (b) above, it follows that $\left\langle e_{\alpha}, x\right\rangle \neq 0$ only for countable many elements, $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$. We have $\sum_{j \in \mathbb{N}}\left|\left\langle e_{\alpha}, x\right\rangle\right|^{2} \leq\|x\|^{2}$. We claim $x_{n}:=\sum_{j=1}^{n} e_{\alpha_{j}}\left\langle e_{\alpha_{j}}, x\right\rangle$ is Cauchy sequence. Let $n \geq m$. Then

$$
\left\|x_{n}-x_{m}\right\|^{2}=\left\|\sum_{j=m}^{n} e_{\alpha_{j}}\left\langle e_{\alpha_{j}}, x\right\rangle\right\|^{2}=\sum_{j=n}^{m}\left|\left\langle e_{\alpha_{j}}, x\right\rangle\right|^{2}
$$

and hence $\left(x_{n}\right)_{n}$ is a Cauchy sequence. Because \mathcal{H} is a Banach space, it follows that $x_{n} \longrightarrow \tilde{x}$.

$$
\begin{aligned}
\left\langle e_{\alpha_{j}}, x-\tilde{x}\right\rangle & =\lim _{N \rightarrow \infty}\left\langle e_{\alpha_{j}}, x-x_{N}\right\rangle \\
& =\lim _{N \rightarrow \infty}\left\langle e_{\alpha_{j}}, x-\sum_{k=1}^{N} e_{\alpha_{k}}\left\langle e_{\alpha_{k}}, x\right\rangle\right\rangle \\
& =\left\langle e_{\alpha_{j}}, x\right\rangle-\left\langle e_{\alpha_{j}}, x\right\rangle \\
& =0
\end{aligned}
$$

If $\alpha \neq \alpha_{j}$, then also $\left\langle e_{\alpha}, x-\tilde{x}\right\rangle=0$. Then for all $\alpha \in A, e_{\alpha} \in S,\left\langle e_{\alpha}, x-\tilde{x}\right\rangle=0$. Therefore $x-\tilde{x}=0$, because otherwise $S \cup\left\{\frac{x-\tilde{x}}{\|x-\tilde{x}\|}\right\}$ is an orthonormal set.

$$
\begin{aligned}
& \left\|x-\sum_{j=1}^{N}\left\langle e_{\alpha_{j}}, x\right\rangle e_{\alpha_{j}}\right\| 2=\left\langle x-\sum_{j=1}^{N}\left\langle e_{\alpha_{j}}, x\right\rangle e_{\alpha_{j}}, x-\sum_{k=1}^{N}\left\langle e_{\alpha_{k}}, x\right\rangle e_{\alpha_{k}}\right\rangle \\
& =\|x\|^{2}-2 \sum_{k=1}^{N}\left|\left\langle e_{\alpha_{k}}, x\right\rangle\right|^{2}+\sum_{k=1}^{N}\left|\left\langle e_{\alpha_{k}}, x\right\rangle\right|^{2} \\
& =\|x\|^{2}-\sum_{k=1}^{N}\left|\left\langle e_{\alpha_{k}}, x\right\rangle\right|^{2} \\
& \begin{aligned}
0 & =\lim _{N \rightarrow \infty}\left\|x-\sum_{k=1}^{N} e_{\alpha_{k}}\left\langle e_{\alpha_{k}}, x\right\rangle\right\|^{2} \quad \therefore \quad\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle e_{\alpha_{k}}, x\right\rangle\right|^{2} \\
= & \lim _{N \rightarrow \infty}\left(\|x\|^{2}-\sum_{k=1}^{N}\left|e_{\alpha_{k}}\left\langle e_{\alpha_{k}}, x\right\rangle\right|^{2}\right) \quad \therefore
\end{aligned}
\end{aligned}
$$

Steps:

1. Only countable many c_{α} is non-zero
2. Prove that partial sums $\sum_{j=1}^{N} c_{\alpha_{j}} e_{\alpha_{j}}$ is Cauchy
3. If Cauchy, then convergent.

Recap:
Theorem 2.70 (characterization of orthonormal basis). Let $S=\left\{e_{\alpha}\right\}_{\alpha \in A}$ be an orthonormal set. Then each of the following statements is equivalent to " S is a basis":
(i) $\forall S^{\prime}$ orthonormal set : $S^{\prime} \supseteq S \Rightarrow S^{\prime}=S$
(ii) $S^{\perp}=\{0\}$, i.e. $\forall x \in \mathcal{H}:\left(\forall \alpha \in A:\left\langle x, e_{\alpha}\right\rangle=0\right) \Rightarrow x=0$
(iii) $\overline{\operatorname{span} S}=\mathcal{H}$
(iv) $\forall x \in \mathcal{H}:\|x\|^{2}=\sum_{\alpha \in A}\left|\left\langle x, e_{\alpha}\right\rangle\right|^{2}$
(v) $\forall x \in \mathcal{H}: x=\sum_{\alpha \in A} e_{\alpha}\left\langle e_{\alpha}, x\right\rangle$
(vi) $\forall x, y \in \mathcal{H}:\langle x, y\rangle=\sum_{\alpha \in A} \overline{\left\langle e_{\alpha}, x\right\rangle} \cdot\left\langle e_{\alpha}, y\right\rangle$

Proof. We proved the hard parts in the last lecture.
$"(\mathrm{v}) \Rightarrow(\mathrm{vi}) ":$

$$
\begin{aligned}
&\langle x, y\rangle=\left\langle\sum_{\alpha} e_{\alpha}\left\langle e_{\alpha}, x\right\rangle, \sum_{\beta} e_{\beta}\left\langle e_{\beta}, y\right\rangle\right\rangle \\
&=\sum_{\alpha, \beta} \overline{\left\langle e_{\alpha}, x\right\rangle} \cdot\left\langle e_{\beta}, y\right\rangle \cdot\left\langle e_{\alpha}, e_{\beta}\right\rangle \\
&=\sum_{\alpha} \overline{\left\langle e_{\alpha}, x\right\rangle} \cdot\left\langle e_{\alpha}, y\right\rangle \\
& \lim _{N \rightarrow \infty}\left\langle\sum_{j=1}^{N} e_{\alpha_{j}}\left\langle e_{\alpha_{j}}, x\right\rangle, \sum_{k=1}^{N} e_{\beta_{k}}\left\langle e_{\beta_{k}}, x\right\rangle\right\rangle=\left\langle\sum_{j=1}^{\infty} e_{\alpha_{j}}\left\langle e_{\alpha_{j}}, x\right\rangle, \sum_{k=1}^{\infty} e_{\beta_{k}}\left\langle e_{\beta_{k}}, x\right\rangle\right\rangle
\end{aligned}
$$

Definition 2.71 (separable space). A topological space X is called separable, if it contains a countable dense subset S,

$$
S=\left\{x_{n}\right\}_{n=1}^{\infty} \in X^{\mathbb{N}} \quad \text { and } \quad \bar{S}=X
$$

Algorithm 2.72 (Gram-Schmidt orthonormalization). Let $\left\{v_{n}\right\}_{n=1}^{\infty}$ be a set of independent vectors. Define recursively:

$$
\begin{aligned}
w_{1} & =v_{1}, & e_{1} & =\frac{w_{1}}{\left\|w_{1}\right\|} \\
w_{n+1} & =v_{n+1}-\sum_{j=1}^{n} e_{j}\left\langle e_{j}, v_{n+1}\right\rangle, & e_{n+1} & =\frac{w_{n+1}}{\left\|w_{n+1}\right\|}
\end{aligned}
$$

Then:
(1) $\left\{e_{j}\right\}_{j=1}^{N}$ is orthonormal
(2) $\operatorname{span}\left\{v_{j}\right\}_{j=1}^{n}=\operatorname{span}\left\{e_{j}\right\}_{j=1}^{n}$ for any $1 \leq n \leq N$

Theorem 2.73 (characterization of separable Hilbert spaces). A Hilbert space is separable iff it has countable orthogonal basis.

Proof. Proof of " \Rightarrow ": $\overline{\left\{x_{n}\right\}_{n=1}^{\infty}}=\mathcal{H}$

1. Get sequence $\left\{v_{n}\right\}_{n=1}^{N}$ (where $N \in \mathbb{N}_{0} \cup\{\infty\}$) of linearly independent vectors such that $\overline{\left\{v_{n}\right\}_{n=1}^{N}}=\mathcal{H}$
2. Now do Gram-Schmidt orthgonalization process to get $S=\left\{e_{n}\right\}_{n=1}^{\infty}$, by construction $\overline{\operatorname{span}(S)}=\mathcal{H}$

Proof of " \Leftarrow ": Consider alls rational finite linear combinations of basis vectors (see exercise).
Corollary 2.74 (coordinate representation is isometry). A separable infinite-dimensional Hilbert space \mathcal{H} is isometric to ℓ^{2}. A finite-dimensional Hilbert space is isometric to \mathbb{C}^{n} for some n.

Proof. Separable Hilbert space has a basis $\left\{e_{n}\right\}_{n=1}^{\infty}$. Define map

$$
\mathcal{H} \rightarrow \ell^{2}, x \mapsto\left\{\left\langle e_{n}, x\right\rangle\right\}_{n=1}^{\infty}
$$

then:

- Well-defined because of Bessel inequality
- Isometry because of Parseval identity $\left(\|x\|_{\mathcal{H}}=\left\|\left\{\left\langle e_{n}, x\right\rangle\right\}_{n=1}^{\infty}\right\|_{\ell^{2}}\right)$
- Bijective because of ...

2.11 [Digression] Applications

2.11.1 Measure theory

Theorem 2.75 (Radon-Nikodym). Let μ, ν be finite measures on a measureable space (X, Σ). Suppose that ν is absolutely continuous w.r.t. μ, then there exists a $g \mu$-measureable and $g \geq 0$ such that

$$
\forall E \in \Sigma: \nu(E)=\int_{E} g \mathrm{~d} \mu,
$$

what is equivalent to

$$
\int_{X} f \mathrm{~d} \nu=\int_{X}(f \cdot g) \mathrm{d} \mu
$$

g is called the Radon-Nikodym derivative, " $\mathrm{d} \nu=g \mathrm{~d} \mu$ ".

Remark 2.76. The theorem also holds for σ-finite measures. Recall:

- Finite: $\quad \mu(X), \nu(X)<\infty$
- σ-finite: . .
- Absolutely continuous $\nu \ll \mu: \quad \forall F \in \Sigma: \mu(F)=0 \Rightarrow \nu(F)=0$

Proof by von Neumann. $L^{2}(X, \mu+\nu)$ is a (real) Hilbert space,

$$
\langle f, g\rangle=\int_{X}(f \cdot g)(\mathrm{d} \nu+\mathrm{d} \mu), \quad\|f\|=\sqrt{\int_{X} f^{2}(\mathrm{~d} \nu+\mathrm{d} \mu)}
$$

Consider a functional $f \mapsto \int_{X} f \mathrm{~d} \mu$. Claim: This is a bounded functional $\mathcal{H} \rightarrow \mathbb{R}$.

$$
\left|\int_{X} f \mathrm{~d} \mu\right| \leq \sqrt{\int_{X} f^{2} \mathrm{~d} \mu} \cdot \sqrt{\int_{X} \mathrm{~d} \mu} \leq \sqrt{\int_{X} f^{2}(\mathrm{~d} \mu+\mathrm{d} \nu)} \cdot \mu(X)
$$

By virute of the Riesz representation theorem (" $\mathcal{H}^{\star}=\mathcal{H}$ "), there exists a function h such that

$$
\begin{align*}
\int_{X} f \mathrm{~d} \mu & =\int_{X}(f g)(\mathrm{d} \mu+\mathrm{d} \nu) \\
\int_{x} f(1-h) \mathrm{d} \mu & =\int_{X}(f h) \mathrm{d} \nu \tag{*}
\end{align*}
$$

Define function \tilde{f} such that $f=\tilde{f} \frac{1}{h}$. Claim $0<h \leq 1$ almost surely:

- Let $F:=\{x \mid h(x) \leq 0\}$. Put $f=$ characteristic function of F into (*):

$$
\mu(F) \leq \int_{F}(1-h) \mathrm{d} \mu=\int_{F} h \mathrm{~d} \nu \leq 0 \quad \therefore \quad \mu(F) \leq 0 \quad \therefore \quad \mu(F)=0 \quad \therefore \quad \nu(F)=0 \quad \therefore \quad(\mu+\nu)(F)=0
$$

- Let $F=\{x \mid h(x)>1\}$. Put characterisitic function of F into (*),

$$
\int_{F}(1-h) \mathrm{d} \mu=\int_{F} h \mathrm{~d} \nu
$$

Suppose that $\mu(F)>0$, then the left hand side is negative, but the right hand side is non-negative. Contradiction, hence $\mu(F)=0$, and therefore $(\mu+\nu)(F)=0$.
Put $f=\tilde{f} \frac{1}{h}$ into (*),

$$
\int_{X} \tilde{f} \frac{1-h}{h} \mathrm{~d} \mu=\int_{X} \tilde{f} \mathrm{~d} \nu
$$

Conclusion: $g=\frac{1-h}{h}$ satisfies the theorem.

2.11.2 Fourier transform

Classical result in Fourier theory:
Definition 2.77 (Fourier coefficients). To each function f, define the fourier coefficients of f to be

$$
c_{n}:=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{+\pi} \mathrm{e}^{\mathrm{i} n x} f(x) \mathrm{d} x, \quad n \in \mathbb{Z}
$$

Theorem 2.78 (Fourier series - classical viewpoint). For every 2π-periodic function $f \in C(]-\pi,+\pi[)$, its Fourier series converges uniformly to f,

$$
\frac{1}{\sqrt{2 \pi}} \sum_{j=-N}^{+N} c_{j} \mathrm{e}^{\mathrm{i} j x} \xrightarrow[\text { uniformly }]{N \rightarrow \infty} f(x)
$$

Theorem 2.79 (Fourier series - functional analysis viewpoint). Consider the space $L^{2}(]-1,+1[)$. Then $\left(e_{n}\right)_{n \in \mathbb{N}}, e_{n}(x)=$ $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{\mathrm{i} n x}$ is an orthonormal basis of $L^{2}(]-1,+1[)$, i.p. $\forall m \neq n:\left\langle e_{m}, e_{n}\right\rangle=0$ and $\forall n:\left\langle e_{n}, e_{n}\right\rangle=1$. Therefore, for every function $f \in L^{2}(]-1,+1[)$

$$
\sum_{n} c_{n} e_{n} \underset{L^{2} \text {-conv. }}{\longrightarrow} f \quad \text { where } \quad c_{n}:=\left\langle e_{n}, f\right\rangle \quad \text { i.e. } \quad f \xlongequal[L^{2} \text {-eq. }]{ } \sum_{n=-\infty}^{n=+\infty} e_{n}\left\langle e_{n}, f\right\rangle
$$

where the latter equality is in the L^{2}-sense, not pointwise equality.
Proof. Use Stone-Weierstrass theorem, to get that $S=\left\{e_{n}\right\}_{n=1}^{\infty}$ is dense in $C(]-\pi,+\pi[)$.

Bounded Operators

3.1 Bounded Linear Maps

M, N normed linear spaces (over the same field \mathbb{F}).
Definition 3.1 (continuity, linearity, boundedness of maps). Let $L: M \rightarrow N$ be a map.

- L is called linear, if $\forall \alpha \in \mathbb{F}, x, y \in M: L(x+\alpha y)=L(x)+\alpha L(y)$
- L is called sequential continuous, if $x_{n} \xrightarrow[\text { in } M]{n \rightarrow \infty} x \Rightarrow L\left(x_{n}\right) \xrightarrow[\text { in } N]{n \rightarrow \infty} L(x)$.

Note that in metric spaces, continuity is equivalent to sequential continuity.

- L is called bounded, if $\exists C>0:\|L(x)\|_{N} \leq C \cdot\|x\|_{M}$.

This condition is equivalent to $\sup _{\|x\|_{M}=1}\|L(x)\|_{N}<\infty$.

Definition 3.2 (diameter, boundedness of sets). Set S is bounded if $\operatorname{diam}(S):=\sup _{x, y \in S}\|x-y\|_{M}<\infty$.
Prop. 3.3 (characterization of bounded maps). A map L is bounded iff it maps bounded sets to bounded sets.
Proof. Proof of " \Rightarrow ":

$$
\operatorname{diam}(L[S])=\sup _{x, y \in S}\|L(x)-L(y)\|_{N} \leq C \sup _{x, y \in S}\|x-y\|_{M}=C \operatorname{diam}(S)
$$

Proof of " \Leftarrow ": $L\left[B_{1}\right]$ is bounded set then $\operatorname{diam}\left(L\left[B_{1}\right]\right)<\infty$:

$$
\sup _{\|x\|_{M}=1}\|L(x)\|_{N} \leq \operatorname{diam}\left(L\left[B_{1}\right]\right)<\infty
$$

Theorem 3.4 (characterization of continuity for linear maps). Let L be a linear map $M \rightarrow N$. Then the following is equivalent:
(i) L is continuous
(ii) L is continuous at 0
(iii) L is bounded

Proof.

- "(i) \Rightarrow (ii)": clear.
- "(ii) \Rightarrow (iii)": Because f is continuous at 0 , there exists a $\delta>0$ such that $\|x\|_{M} \leq$ $\delta \Rightarrow\|L(x)\|_{N} \leq 1$. Then

$$
\sup _{\|x\|_{M}=1}\|L(x)\|_{N}=\frac{1}{\delta} \sup _{\|x\|_{M}=1}\|L(\delta x)\|_{N} \leq \frac{1}{\delta}<\infty
$$

- "(iii) \Rightarrow (i)": Because f is bounded, there exists a C such that \ldots. Pick $\|x-y\|_{M} \leq \frac{\varepsilon}{C}=\delta$, then

$$
\|L(x-y)\|_{N} \leq C\|x-y\|_{M}=\varepsilon
$$

Definition 3.5 (space of all bounded linear maps, operator norm). Let $\mathcal{L}(M, N)$ denote the space of all bounded linear maps from M to N. The elements of $\mathcal{L}(M, N)$ are called bounded operators. For the special case $M=N$ we also write $\mathcal{L}(M, N)=\mathcal{B}(M)$. We equip $\mathcal{L}(M, N)$ with the so-called operator norm $\|\cdot\|_{M \rightarrow N}$,

$$
\|\cdot\|_{M \rightarrow N}:=\sup _{\|x\|_{M}=1}\|L x\|_{N}<\infty .
$$

Definition 3.6 (dual space). Recall definition 3.5 and consider the special case $N=\mathbb{F}$ (where $\mathbb{F}=\mathbb{R}$ or \mathbb{C}). Then $\mathcal{L}(M, \mathbb{F})=M^{*}$ is the dual space of M, and the elements of $\mathcal{L}(M, \mathbb{F})$ are the linear functionals on M.

Recall:
Definition 2.48 (dual space). A map $\varphi: \mathcal{H} \rightarrow \mathbb{C}$ is called a linear functional, if it is a bounded linear map, i.e.:
(1) Linearity: $\forall x, y \in \mathcal{H}, \alpha \in \mathbb{C}: \varphi(x+\alpha y)=\varphi(x)+\alpha \varphi(y)$
(2) Boundedness: $\exists C \in \mathbb{R}:|\varphi(x)| \leq C\|x\|_{\mathcal{H}}$

The space of all linear functionals on \mathcal{H} is called the dual space \mathcal{H}^{*} of \mathcal{H}. We equip \mathcal{H}^{*} with a norm $\|\cdot\|_{\mathcal{H}^{*}}$,

$$
\|\varphi\|_{\mathcal{H}^{*}}:=\sup _{x \in \mathcal{H},\|x\|=1}|\varphi(x)|=\sup _{x \in \mathcal{H}, x \neq 0} \frac{|\varphi(x)|}{\|x\|}
$$

Remark 2.49. Remark by the typesetter: This definition holds for any normed space, not just Hilbert spaces. Anyway, the more general definition will come in definition 3.6. Furhtermore, the norm $\|\cdot\|_{M^{*}}$ conincides with the operator norm $\|\cdot\|_{M \rightarrow \mathbb{F}}$.

Notation 3.7. Sometimes, we omit braces "(", ")" and the composition symbol "०":

- For $L: M \rightarrow N$ linear map and $x \in M$, we write $L(x):=L x$.
- For $L_{1}: M_{1} \rightarrow M_{2}$ and $L_{2}: M_{2} \rightarrow M_{3}$, we write $L_{2} L_{1}:=L_{2} \circ L_{1}: M_{1} \rightarrow M_{3}$.

Two inequalities about $\|\cdot\|_{M \rightarrow N}$:
Theorem 3.8 (submultiplicativity of the operator norm).
(1) $\|L x\|_{N} \leq\|L\|_{M \rightarrow N}\|x\|_{M}$.
(2) $\left\|L_{2} L_{1}\right\|_{M_{1} \rightarrow M_{3}} \leq\left\|L_{2}\right\|_{M_{2} \rightarrow M_{3}}\left\|L_{1}\right\|_{M_{1} \rightarrow M_{2}}$

Proof.

$$
\begin{gather*}
\|L x\|_{N} \leq \sup _{\|y\|_{M}=1} L\left(y\|x\|_{M}\right)=\|x\|_{M}\|L\|_{M \rightarrow N} \tag{1}\\
\left\|L_{2} L_{1}\right\|_{M_{1} \rightarrow M_{3}}=\sup _{\|x\|_{M_{1}}=1}\left\|L_{2} L_{1} x\right\|_{M_{3}} \leq \sup _{\|x\|_{M_{1}}=1}\left\|L_{2}\right\|_{M_{2} \rightarrow M_{3}}\left\|L_{1} x\right\|_{M_{2}}=\left\|L_{2}\right\|_{M_{2} \rightarrow M_{3}}\left\|L_{1}\right\|_{M_{1} \rightarrow M_{2}} \tag{2}
\end{gather*}
$$

Theorem 3.9 (properties of $\mathcal{L}(M, N)$). The space $\left(\mathcal{L}(M, N),\|\cdot\|_{M \rightarrow N}\right)$ is a normed linear space. And if N is a Banach space, then so is $\mathcal{L}(M, N)$.

Proof. $\|\cdot\|_{M \rightarrow N}$ is a norm:

$$
\left\|L_{1}+L_{2}\right\|_{M \rightarrow N}=\sup _{\|x\|_{M}=1}\left\|\left(L_{1}+L_{2}\right) x\right\|_{N} \leq \sup _{\|x\|_{M}=1}\left\|L_{1} x\right\|_{N}+\sup _{\|x\|_{M}=1}\left\|L_{2} x\right\|_{N}=\left\|L_{1}\right\|_{M \rightarrow N}+\left\|L_{2}\right\|_{M \rightarrow N}
$$

Consider Cauchy sequence $\left(L_{n}\right)_{n=1}^{\infty}$,

$$
\left\|L_{n}-L_{k}\right\|_{M \rightarrow N} \leq \varepsilon \text { if } n, k \text { is large. }
$$

Then for each $x \in M,\left(L_{n} x\right)_{n}$ is Cauchy sequence in N,

$$
\left\|L_{n} x-L_{k} x\right\|_{N} \leq\left\|L_{n}-L_{k}\right\|_{M \rightarrow N}\|x\|_{M} \leq \varepsilon\|x\|_{M} .
$$

Because N is a Banach space, it follows that $L x:=\lim _{n \rightarrow \infty} L_{n} x$ exists for each $x \in M$.

- Linearity: $L(x+y)=\lim _{n \rightarrow \infty} L_{n}(x+y)=\lim _{n \rightarrow \infty} L_{n} x+L_{n} y=L x+L y$
- Boundedness: Observe $\left(\left\|L_{n}\right\|_{M \rightarrow N}\right)_{n}$ is a Cauchy sequence, $\mid\|L\|-\|\tilde{L}\|\|\leq\| L-\tilde{L} \|$. If $\left(\left\|L_{n}\right\|_{M \rightarrow N}\right)_{n}$ is Cauchy, then there is a $C>0$ such that $\forall n \in \mathbb{N}:\left\|L_{n}\right\|_{M \rightarrow N} \leq C$. Then we have $\sup _{\|x\|_{M}=1}\|L x\|_{N}=$ $\sup _{\|x\|_{M}=1} \lim _{n \rightarrow \infty}\left\|L_{n} x\right\|_{N} \leq \sup _{\|x\|_{M}=1} \lim _{n \rightarrow \infty} C\|x\|_{M}=C<\infty$.
Let n be such that for all $k \geq n$ it holds that

$$
\begin{aligned}
& \forall x \in M: \lim _{k \rightarrow \infty}\left\|\left(L_{n}-L_{k}\right) x\right\|_{N} \leq \varepsilon\|x\|_{M} \\
\therefore & \left\|\left(L_{n}-L\right) x\right\|_{N} \leq \varepsilon\|x\|_{M} \\
\therefore & \sup _{n}\left\|\left(L_{n}-L\right) x\right\|_{N} \leq \varepsilon \\
\therefore & \left\|L_{M}-L\right\|_{M \rightarrow N} \leq \varepsilon
\end{aligned}
$$

Example 3.10 (examples of linear maps).

(1) Consider $M=C([-1,+1])$ and a linear functional $\varphi \in M^{*}$ defined by $\varphi(f)=f(0)$. Then $|\varphi(f)| \leq\|f\|_{M}$, and hence $\|\varphi\|_{M^{\star}} \leq 1$, and actually $\|\varphi\|_{M^{\star}}=1$.
(2) Consider $M=C([0,+1])$ and continuous function $K:[0,+1] \times[0,+1] \rightarrow \mathbb{C}$, then $(L f)(x):=\int_{0}^{1} K(x, y) f(y) \mathrm{d} y$ is an operator in $\mathcal{L}(M)$.

$$
\|L f\|_{M}=\sup _{x \in[0,1]}|(L f)(x)|=\sup _{x \in[0,1]}\left|\int_{0}^{1} K(x, y) f(y) \mathrm{d} y\right| \leq \sup _{x, y \in[0,1]}|K(x, y)|\|f\|_{M} \quad \therefore \quad\|L\|_{M \rightarrow M} \leq \sup _{x, y \in[0,1]}|K(x, y)|
$$

Question: Let $L: M \rightarrow N$ be a bounded norm, $L \in \mathcal{L}(M, N)$, and consider the norm $\|\cdot\|_{M \rightarrow N}$. Is $\|L\|_{M \rightarrow N}=$ $\sup _{x \in M,\|x\|_{M} \leq 1}\|L x\|_{N}$ a correct relation?

3.2 Digression: Unbounded operators

Remark 3.11 (unbounded maps).

- unbounded \neq not bounded
- unbounded $=$ not defined everywhere (very important)
- discontinuous $=$ not bounded (obscurity)

Definition 3.12 (Hamel basis). Hamel basis (algebraic basis) of M : This is a set $S=\left\{e_{\alpha}\right\}_{\alpha \in A}$ satisfying:

- Any finite subset of S is linearly independent
- All $x \in M$ can be uniquely written as finite linear combination of $\left\{e_{\alpha}\right\}_{\alpha \in A}$

Prop. 3.13 (every linear space has an algebraic basis). Every normed linear space M has an algebraic basis.

Remark 3.14. If M is a Banach space and $\operatorname{dim} M=\infty$, then the Hamel basis is uncountable.

Prop. 3.15 (existence of discontinuous maps). Not bounded maps do exist.
Proof. Let M be a Banach space of $\operatorname{dim} M=\infty$. Pick a countable sequence $\left(e_{\alpha_{n}}\right)_{n=1}^{\infty}$ (w.l.o.g. $\left\|e_{\alpha_{n}}\right\|=1$). Define $L: M \rightarrow \mathbb{C}$ by $L e_{\alpha_{n}}=n$, and $L e_{\alpha}=0$ if $e_{\alpha} \neq e_{\alpha_{n}}$ for any n, and linearity. Then L is linear, but clearly not bounded.

3.3 The Dual Space of a ℓ^{p}-Space

Consider ℓ^{p}, at first only $\left.p \in\right] 1, \infty[$, and $p \in\{1, \infty\}$ later.
Theorem 3.16 (Hölder inequality). For $x \in \ell^{p}$ and $y \in \ell^{q}$, where p, q conjugate numbers, e.g. $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\left|\sum_{n=1}^{\infty} x_{n} y_{n}\right| \leq\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p} \cdot\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{q}\right)^{1 / q}=\|x\|_{p} \cdot\|y\|_{q}
$$

Proof. Omitted.
Lemma 3.17 (every vector in ℓ^{q} induces a linear functional in $\left.\left(\ell^{p}\right)^{*}\right)$. For $y \in \ell^{q}$, define

$$
\varphi: \ell^{p} \rightarrow \mathbb{C}, \varphi_{y}(x):=\sum_{n=1}^{\infty} x_{n} y_{n}
$$

Then $\varphi_{y} \in\left(\ell^{p}\right)^{*}$, i.e. φ_{y} is bounded.

Proof.

$$
\left\|\varphi_{y}\right\|=\sup _{\|x\|_{p}=1}\left|\varphi_{y}(x)\right|=\sup _{\|x\|_{p}=1}\left|\sum_{n=1}^{\infty} x_{n} y_{n}\right| \leq \sup _{\|x\|_{p}=1}\|x\|_{p}\|y\|_{q}=\|y\|_{q}
$$

Lemma 3.18 (norm of induced functional). For every $y \in \ell^{q}$, it holds that

$$
\left\|\varphi_{y}\right\|_{\left(\ell^{p}\right)^{*}}=\|y\|_{\ell^{q}} .
$$

Proof. From the proof of lemma 3.17 we know $\left\|\varphi_{y}\right\|_{\left(\ell^{p}\right)^{*}} \leq\|y\|_{\ell^{q}}$. Furthermore, for any $\|z\|_{p}=1,\left\|\varphi_{y}\right\|=\sup _{\|x\|_{p}=1}\left|\varphi_{y}(x)\right| \geq$ $\left|\varphi_{y}(z)\right|$. We claim that equality is achieved if $\left|x_{n}\right|^{p}=\left|y_{n}\right|^{q}$, i.e. $\left|x_{n}\right|=\left|y_{n}\right|^{q / p}$. Proof of claim: Take $\tilde{z}=\left|y_{n}\right|^{q / p} \operatorname{sgn}\left(y_{n}\right)$, then $\tilde{z} \in \ell^{p}$, because $\|\tilde{z}\|_{p}^{p}=\sum_{n=1}^{\infty}\left|y_{n}\right|^{q}=\|y\|_{q}{ }^{q}$. Take $z=\frac{\tilde{z}}{\|y\|_{q}{ }^{q / p}}$, then

$$
\varphi_{y}(z)=\sum_{n=1}^{\infty} \frac{\left|y_{n}\right|^{q / p}}{\|y\|_{q}^{q / p}}=\|y\|_{q}^{-q / p} \sum_{n=1}^{\infty}\left|y_{n}\right|^{q / p+1}=\|y\|_{q}^{-q / p}\|y\|_{q}^{q}=\|y\|_{q}
$$

We conclude $\left\|\varphi_{y}\right\|_{\left(\ell^{p}\right)^{*}}=\|y\|_{\ell q}$.
Lemma 3.19 (duality between p - and q-norm).

$$
\|x\|_{p}=\sup _{\|y\|_{q}=1}\left|\sum_{n=1}^{\infty} x_{n} y_{n}\right|=\sup _{\|y\|_{q}=1}\left|\varphi_{y}(x)\right|
$$

Proof. Righthand side is

$$
\sup _{\|y\|_{q}=1}\left|\varphi_{y}(x)\right| \leq \sup _{\|y\|_{q}=1}\left\|\varphi_{y}\right\|\|x\|_{p}=\|x\|_{p}
$$

Pick $y_{n}=\left|x_{n}\right|^{p / q} \operatorname{sgn}\left(x_{n}\right)$, then $\|x\|_{p}=\sup _{\|y\|_{q}=1}\left|\varphi_{y}(x)\right|$.
Lemma 3.19 can be used in convex optimization. Another application of lemma 3.19 is proving that the p-norm $\|\cdot\|_{p}$ is indeed a norm.
Corollary 3.20 (Minkowsi inequality $=$ triangle inequality for $\|\cdot\|_{p}$). \| $\cdot \|_{p}$ satisfies the triangle inequality.
Proof.

$$
\left\|x_{1}+x_{2}\right\|_{p}=\sup _{\|y\|_{q}=1}\left|\varphi_{y}\left(x_{1}+x_{2}\right)\right| \leq \sup _{\|y\|_{q}=1}\left(\left|\varphi_{y}\left(x_{1}\right)\right|+\left|\varphi_{y}\left(x_{2}\right)\right|\right)=\left\|x_{1}\right\|_{p}+\left\|x_{2}\right\|_{p}
$$

Corollary 3.21 (p-norm is a norm). From corollary 3.20 it follows that $\|\cdot\|_{p}$ is a norm.
Lemma 3.22 (every linear functional in $\left(\ell^{p}\right)^{*}$ is induced by a vector in ℓ^{q}). For all $\varphi \in\left(\ell^{p}\right)^{*}$, there exists a $y \in \ell^{q}$ such that $\forall x \in \ell^{p}: \varphi(x)=\varphi_{y}(x)$.

Proof. Let $\varphi \in\left(\ell^{p}\right)^{*}$ and $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0, \ldots)$, etc.. Define y by $y_{n}:=\varphi\left(e_{n}\right)$. Things to check:

1. $y \in \ell^{q}$:

$$
\|y\|_{q}=\sup _{\|x\|_{p}=1}\left|\sum x_{n} y_{n}\right|=\sup _{\|x\|_{p}=1}\left|\sum_{n=1}^{\infty} x_{n} \varphi\left(e_{n}\right)\right|=\sup _{\|x\|_{p}=1}|\varphi(x)| \leq\|\varphi\|<\infty
$$

2. $\varphi=\varphi_{y}$:

By construction $\varphi=\varphi_{y}$ on $c_{\mathrm{cpt}} \subseteq \ell^{p}$. We know that c_{cpt} is dense in $\ell^{p}, p<\infty$, so it follows that $\varphi=\varphi_{y}$ (if continuous map coincide on a dense subset, then they are the same everywhere).

Corollary $3.23\left(\left(\ell^{p}\right)^{*}\right.$ is isomorphic to $\left.\ell^{q}\right) .\left(\ell^{p}\right)^{*}$ is isomorphic to ℓ^{q} : By lemma 3.17 and lemma 3.22 every vector $y \in \ell^{q}$ corresponds to a linear functional $\varphi \in\left(\ell^{p}\right)^{*}\left(\right.$ via $\left.y \mapsto \varphi_{y}\right)$, and vice versa. Furthermore, by lemma 3.18 this bijection ($y \mapsto \varphi_{y}$) is isometric.

Remark 3.24.

$$
\begin{aligned}
\left\|\varphi_{y}\right\|_{\left(\ell^{p}\right)^{*}} & =\sup _{x \in \ell^{p},\|x\|_{\ell^{p}=1}}\left|\varphi_{y}(x)\right| \\
\|x\|_{\ell^{p}} & =\sup _{\varphi \in\left(\ell^{p}\right)^{*},\|\varphi\|_{\left(\ell^{p}\right)^{*}=1}}|\varphi(x)|
\end{aligned} \quad \text { by claim }
$$

Remark 3.25. (" \cong " means isometric)

- $\left(\ell^{1}\right)^{*} \cong \ell^{\infty}$
- $\left(\ell^{\infty}\right)^{*}$ is more complicated, since c_{cpt} is not dense in ℓ^{∞}
- $\left(L^{p}(X, \Sigma, \mu)\right)^{*} \cong L^{q}\left(X, \sum, \mu\right)$ for $\left.p \in\right] 1, \infty[$
- $\left(L^{1}(X, \Sigma, \mu)\right)^{*} \cong L^{\infty}\left(X, \sum, \mu\right)$ if μ is σ-finite
- $\left(L^{\infty}(X, \Sigma, \mu)\right)^{*} \cong \mathrm{bq}\left(X, \sum\right)=$ space of all σ-finite bounded measures $\nu \ll \mu$ Example: $\left(L^{\infty}([-1,+1])^{*}\right.$ constains inter alia of:
- For any $g \in L^{1}([-1,+1]), f \mapsto \int_{-1}^{+1} \int_{-1}^{+1} f(x) \cdot g(x) \mathrm{d} x$
- Measures: " δ-function: $f \mapsto f(0)$ "

3.4 Hahn-Banach Theorem

Prop. 3.26. Let M be a normed linear space and $x \in M$.

$$
\|x\|=\sup _{\varphi \in M^{*},\|\varphi\|=1}|\varphi(x)|
$$

Proof of proposition 3.26-Part 1/2. Steps:

1. $\sup _{\|\varphi\|=1}|\varphi(x)| \leq \sup _{\|\varphi\|=1}\|\varphi\|\|x\|=\|x\|$
2. Try to find $\|\varphi\|=1$ such that $\varphi(x)=\|x\|$.

This is a constrait on $Y=\{\lambda x \mid \lambda \in \mathbb{F}\}$. We finish the proof later.
Theorem 3.27 (Hahn-Banach theorem - real version). Let X be a linear space and p a function $X \rightarrow \mathbb{R}$ that satisfies
(i) positive homogeniety: $\forall x \in X, \alpha>0: p(\alpha x)=\alpha p(x)$, and
(ii) sub-additivity: $\forall x, y \in X: p(x+y) \leq p(x)+p(y)$.

Let φ be a linear functional defined on $Y \subseteq X$, where Y is a linear subspace, such that

$$
\forall y \in Y: \varphi(y) \leq p(y)
$$

Then there exists an extension of φ to X such that $\forall x \in X: \varphi(x) \leq p(x)$.

Remark 3.28.

- If p is absolute homogeneous, i.e. $\forall \alpha \in \mathbb{R}: p(\alpha x)=|\alpha| p(x)$, then p is a pseudo-norm, i.e. a norm without $\forall x \in X: p(x)=0 \Rightarrow x=0$.
- Typically, p is a norm.

Proof of theorem 3.27-Part 1/2. Steps:

1. Suppose $Y \neq X$, then there is a $z \in X, z \notin Y$. We aim to define $\varphi(z)$ such that $\varphi \leq p$ on $\operatorname{span}(Y \cup\{z\})$. We need to find $\varphi(z)$ such that $\forall y \in Y, \alpha \in \mathbb{R}: \varphi(y+\alpha z) \leq p(y+\alpha z)$. For $\alpha>0$ we have $p(y+\alpha z)=\alpha p\left(\frac{y}{\alpha}+z\right)=\alpha p\left(y^{\prime}+z\right)$, where we have put $y^{\prime}:=\frac{y}{\alpha} \in Y$. We need to verify the cases $\alpha=+1$ and $\alpha=-1$, i.e. $\varphi(y+z) \leq p(y+z)$ and $\varphi\left(y^{\prime}-z\right) \leq p\left(y^{\prime}-z\right)$. We have $\forall y, y^{\prime} \in Y$:

$$
\begin{aligned}
\varphi(y)+\varphi(z) \leq p(y+z) & \\
\varphi\left(y^{\prime}\right)-\varphi(z) \leq p\left(y^{\prime}-z\right) & \Leftrightarrow \varphi\left(y^{\prime}\right)-p\left(y^{\prime}-z\right) \leq \varphi(z) \leq p(y+z)-\varphi(y) \\
& \Leftrightarrow \varphi\left(y^{\prime}\right)-p\left(y^{\prime}-z\right) \leq p(y+z)-\varphi(y) \\
& \Leftrightarrow \varphi\left(y^{\prime}\right)+\varphi(y) \leq p\left(y^{\prime}-z\right)+p(y+z) \\
& \Leftrightarrow \varphi\left(y^{\prime}+y\right) \leq p\left(y+y^{\prime}\right)=p\left(y+z+y^{\prime}-z\right) \leq p(y+z)+p\left(y^{\prime}-z\right)
\end{aligned}
$$

2. Next lecture.

Repitition: Hahn-Banach theorem (real version): Let X be a real linear space and $p: X \rightarrow \mathbb{R}$ satisfiying:
(i) $\forall \alpha>0: p(\alpha x)=\alpha p(x)$
(ii) $p(x+y) \leq p(x)+p(y)$

Let Y be a linear subspace of X and φ a functional on Y such that

$$
\begin{equation*}
\forall y \in Y: \varphi(y) \leq p(y) \tag{*}
\end{equation*}
$$

then there exists an extension of φ to all X such that φ is linear and $\forall x \in X: \varphi(x) \leq p(x)$.
Proof of theorem 3.27 - Part 2/2. Steps:

1. For any $z \notin y$, there exists an extension to $\operatorname{span}(Y \cup\{z\})$, such that $(*)$ holds on $\operatorname{span}(Y \cup\{z\})$.
2. Apply Zorn's lemma: Let (W, φ) be a set of all extensions (that satisfy $(*)$), is partially ordered by $(W, \varphi) \preceq$ $\left(W^{\prime}, \varphi^{\prime}\right)$ if $W \subseteq W^{\prime}$ and $\varphi=\varphi^{\prime}$ on W. All satisfy $W \supseteq Y$ and ϕ in Y is as in the theorem. Let $\left(W_{\alpha}, \varphi_{\alpha}\right)$ be a linearly ordered subset, then $W:=\bigcup_{\alpha \in A} W_{\alpha}$ and $\varphi(x)=\left\{\varphi_{\alpha}(x)\right.$ for $x \in W_{\alpha}$. We need to check $\forall \alpha \in A$: $\left(W_{\alpha}, \varphi_{\alpha}\right) \prec(W, \varphi)$, but by construction $W_{\alpha} \subseteq W$ and $\varphi=\varphi_{\alpha}$ on W_{α}, so (W, φ) is an upper bound. By virtue of Zorn's lemma, the set of extension has a maximal element. Let $(\tilde{W}, \tilde{\varphi})$ be a maximal element, then $\tilde{W}=X$.

Theorem 3.29 (Hahn-Banach theorem - complex version). Let X be a complex linear space and $p: X \rightarrow \mathbb{R}$ a pseudonorm (i.e. change condition 3.27.(i) to $\forall \alpha \in \mathbb{C}: p(\alpha x)=|\alpha| p(x))$. Let Y be a linear subspace of X and φ a linear functional on Y such that $\forall y \in Y:|\varphi(y)| \leq p(y)$. Then there exists an extension of φ to X such that φ is linear and $\forall x \in X:|\varphi(x)| \leq p(x)$.

Proof. Similar to the proof of the real version.
Application of Hahn-Banach theorem:
Lemma 3.30 (existence of tangent). Let X be a normed linear space and $x_{0} \in X$. Then there exists a $\varphi \in X^{*}$ such that $\|\varphi\|=1$ and $\varphi\left(x_{0}\right)=\left\|x_{0}\right\|$.

Proof. Let $x_{0} \neq 0$, and define $Y=\left\{\alpha x_{0} \mid \alpha \in \mathbb{F}\right\}$ and $p: X \rightarrow \mathbb{R}, p(x)=\|x\|$. On Y define $\varphi\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\|$. Then by Hahn-Banach theorem, there exists a φ on X such that $|\varphi(x)| \leq\|x\|$ and $\varphi\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\|$. By construction $\|\varphi\| \leq 1$, but $\varphi\left(x_{0}\right)=\left\|x_{0}\right\|$, and hence $\|\varphi\|=1$.

Definition 3.31 (hyperplane, half space, tangent). Let X be a real vectorspace.
A subspace $Y \subseteq X$ is called a hyperplane, if there exists $\varphi \in X^{*}$ and $\alpha \in \mathbb{R}$ such that $Y=\{x \in X \mid \varphi(x)=\alpha\}=:\{\varphi=\alpha\}$. Sets $\{x \in X \mid \varphi(x)<\alpha\}$, resp. $\{x \in X \mid \varphi(x)>\alpha\}$ are called open half spaces.

A tangent to a set K at a point $x_{0} \in K$ is a hyperplane $Y=\{\varphi=\alpha\}$ such that $x_{0} \in Y$ and $K \subseteq\{\varphi \leq \alpha\}$. Look at $B_{1}=\{\|x\| \leq 1\}$. We have any $\left\|x_{0}\right\|=1$, therefore there exists φ such that $\varphi\left(x_{0}\right)=1$ and for $x \in B_{1} \varphi(x) \leq 1$.

Remark 3.32 (uniqueness in Hahn-Banach theorem). Concering lemma 3.30:

Figure 4: Tangents to subspaces of \mathbb{R}^{2}
Middle figure: At some point there may be more than one tangent.

Right figure: One tangent can be tangent to several points.
Geometrical versions of Hahn-Banach theorem in real vector spaces:
Theorem 3.33 (Mazur's theorem). Let X be a real normed linear space.
Let further K be an open convex subset of X, and $x_{0} \in X, x_{0} \notin K$. Then there exists a hyperplane $Y=\{\varphi=\alpha\}$ such that $x_{0} \in Y$ and $K \subseteq\{\varphi<\alpha\}$.

Theorem 3.34 (Geometrical Hahn-Banach theorem). Let X be a normed linear space. Let K, \tilde{K} be two disjoint open convex subsets of normed linear space X. Then there exists $\varphi \in X^{*}$ and $\alpha \in \mathbb{R}$ such that $\forall y \in K: \varphi(y)<\alpha$ and $\forall \tilde{y} \in \tilde{K}: \varphi(\tilde{y})>\alpha$.

Remark 3.35 (complex projective space). Look at $\mathbb{C}, z=z_{0}, \mathbb{C}^{2} \sim(z, w) . \varphi(z, w)=(3+1) z+w=0$ (can't read blackboard). $\mathbb{C P}=\left\{\right.$ space of all lines in $\left.\mathbb{C}^{2}\right\}$. By Poincare duality, $\mathbb{C P} \sim$ sphere in S^{3}.

Lemma 3.36 (dual representation of norm). Let X be a normed linear space. Then, for any $x \in X$

$$
\|x\|=\sup _{\varphi \in X^{*},\|\varphi\|=1}|\varphi(x)| .
$$

Proof. $|\varphi(x)| \leq\|\varphi\|\|x\|$, in particular $\sup _{\varphi \in X^{*},\|\varphi\|=1}|\varphi(x)| \leq\|x\|$. By existence of tangent, there is a φ such that $|\varphi(x)|=\|x\|$ and $\|\varphi\|=1$.

3.5 Reflexive Spaces

Definition 3.37 (bidual space, canonical embedding). Let X be a normed linear space and $Y=X^{*}$, then $Y^{*}=X^{* *}$ is called the bidual space of X. By definition $X^{* *}$ is a normed linear space and for $\varepsilon \in X^{* *}$

$$
\|\varepsilon\|=\sup _{\varphi \in X^{*},\|\varphi\|=1}|\varepsilon(\varphi)| .
$$

Let $x \in X$ and define $J_{x} \in X^{* *}$ by

$$
J_{x}: X^{*} \rightarrow \mathbb{F}, J_{x}(\varphi)=\varphi(x)
$$

We obtain a map $J: X \rightarrow X^{* *}, x \mapsto J_{x}$, the canonical embedding.

Figure 5: Schematic illustration of the bidual space and the canonical embedding.
Proof that $J_{x} \in X^{* *}$ in definition 3.3%.
(1) Linearity: $J_{x}(\varphi+\alpha \tilde{\varphi})=(\varphi+\alpha \tilde{\varphi})(x)=\varphi(x)+\alpha \tilde{\varphi}(x)=J_{x}(\varphi)+\alpha J_{x}(\tilde{\varphi})$
(2) Boundedness: $\left\|J_{x}(\varphi)\right\|=|\varphi(x)| \leq\|\varphi\|\|x\|$

Theorem 3.38 (canonical embedding is isometry). The canonical embedding is an isometric isomorphism of $X \rightarrow$ $J[X] \subseteq X^{* *}$.

Proof. We only proof the "isometric" part of the claim:

$$
\left\|J_{x}\right\|=\sup _{\varphi \in X^{*},\|\varphi\|=1}\left|J_{x}(\varphi)\right|=\sup _{\varphi \in X^{*},\|\varphi\|=1}|\varphi(x)|=\|x\| .
$$

Remark 3.39 (linear isometries are injective). Linear isometries are always injective.

Definition 3.40 (reflexive space). Space X is called reflexive if J is surjective, i.e. $J[X]=X^{* *}$.

Remark 3.41.

- Reflexive spaces are always complete, hence Banach.
- If $\overline{J[X]} \subseteq X^{* *}$ (Remark by the typesetter: this is always true), then $\overline{J[X]}$ is a Banach space. $\overline{J[X]}$ is a completition of X.
- There exists a space X such that X and $X^{* *}$ are isometrically isomorphic, but X is not reflexive.

Remark about completitions:
Definition 3.42 (completition). Let X be a normed linear space. A mapping $\phi: X \rightarrow Y$ is called completition of X, if Y is complete, $\phi[X]$ is dense in Y, and ϕ is an isometric homomorphism. The pair (ϕ, Y) is called completition of X.

Example 3.43 (standard completition). Consider the space of all Cauchy sequences $\left(x_{n}\right)_{n \in \mathbb{N}}$ in X and equip it with the equivalence relation

$$
\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right]=\left[\left(\tilde{x}_{n}\right)_{n \in \mathbb{N}}\right] \Leftrightarrow \lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} \tilde{x}_{n}
$$

Then put $Y=\left\{\left[\left(x_{n}\right)_{n \in \mathbb{N}}\right] \mid\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}\right.$ cauchy $\}$.
Prop. 3.44 (Hilbert spaces are reflexive). All Hilbert spaces are reflexive.
Proof. Preliminary remark: $X=\mathcal{H}, X \cong X^{*}$ by Riesz duality:

$$
\Phi: \mathcal{H} \rightarrow \mathcal{H}^{*}, \Phi(x)=\varphi_{x}, \quad \varphi_{x}(y)=\langle x, y\rangle
$$

So

$$
\left(\mathcal{H}^{*}\right)^{*} \stackrel{\tilde{\Phi}}{\cong} \mathcal{H}^{*} \stackrel{\Phi}{\cong} \mathcal{H}
$$

Proof itself: Let Φ be a Riesz duality between \mathcal{H} and \mathcal{H}^{*}. \mathcal{H}^{*} itself is a Hilbert space, $\left\langle\varphi_{x}, \varphi_{y}\right\rangle=\langle y, x\rangle$. Then we have a map

$$
\tilde{\Phi}: \mathcal{H}^{*} \rightarrow \mathcal{H}^{* *}, \varphi_{x} \mapsto \Phi\left(\varphi_{x}\right)=\varepsilon_{\varphi_{x}}, \quad \varepsilon_{\varphi_{x}}\left(\varphi_{y}\right)=\left\langle\varphi_{x}, \varphi_{y}\right\rangle .
$$

We will check that $\tilde{\Phi} \circ \Phi=J$:

$$
((\tilde{\Phi} \circ \Phi)(x))\left(\varphi_{y}\right)=\left(\tilde{\Phi}\left(\varphi_{x}\right)\right)\left(\varphi_{y}\right)=\varepsilon_{\varphi_{x}}\left(\varphi_{y}\right)=\left\langle\varphi_{x}, \varphi_{y}\right\rangle=\langle y, x\rangle=\varphi_{y}(x)=J_{x}\left(\varphi_{y}\right) \quad \therefore \quad \tilde{\Phi} \circ \Phi=J
$$

Example 3.45 (examples and counterexamples of reflexive spaces).
(1) $L^{p}(X, \Sigma, \mu)$ is reflexive for $\left.p \in\right] 1, \infty\left[\right.$, in particular ℓ^{p} is reflexive for $\left.p \in\right] 1, \infty[$. $\left(L^{p}\right)^{*}=L^{q},\left(L^{q}\right)^{*}=L^{p}, \frac{1}{p}+\frac{1}{q}=1$.
(2) L^{1} and L^{∞} are not reflexive.
(3) $c_{0}, c_{1}, C([0,1])$ are not reflexive.

3.6 The Conjugate of an Operator

Definition 3.46 (Banach conjugate). Let M, N be normed linear spaces and $L \in \mathcal{L}(M, N)$. Then the Banach conjugate L^{\prime} is a linear map $L^{\prime} \in \mathcal{L}\left(N^{*}, M^{*}\right)$ defined by $\forall \varphi \in N^{*}, x \in M:\left(L^{\prime}(\varphi)\right)(x)=\varphi(L(x))$.

Figure 6: Schematic illustration of the banach conjugate of a bounded operator.

Prop. 3.47 (calculation rules for the Banach conjugate). Let M, N, P be normed linear spaces and $\alpha \in \mathbb{F}, T, L \in$ $\mathcal{L}(M, N), S \in \mathcal{L}(N, P)$. Then we have (recall $S \circ L \in \mathcal{L}(M, P)$):
(i) $\left\|L^{\prime}\right\|=\|L\|$
(ii) $(\alpha \cdot L)^{\prime}=\alpha \cdot L^{\prime}$
(iii) $(L+T)^{\prime}=L^{\prime}+T^{\prime}$
(iv) $(S \circ L)^{\prime}=L^{\prime} \circ S^{\prime}$

Proof. Recall that $\forall \varphi \in N^{*}: L^{\prime}(\varphi)=\varphi \circ L$, so linearity follows. We prove only $\left\|L^{\prime}\right\|=\|L\|$.

$$
\begin{aligned}
& \forall \varphi \in N^{*}:\left\|L^{\prime}(\varphi)\right\|=\sup _{\substack{x \in M \\
\|x\|=1}}\left|\left(L^{\prime}(\varphi)\right)(x)\right|=\sup _{\substack{x \in M \\
\|x\|=1}}|\varphi(L(x))| \\
& \qquad\left\|L^{\prime}\right\|=\sup _{\substack{\varphi \in N^{*} \\
\|\varphi\|=1}}\left\|L^{\prime}(\varphi)\right\|=\sup _{\substack{\varphi \in N^{*} \\
\|\varphi\|=1}} \sup _{\substack{x \in M \\
\|x\|=1}}|\varphi(L(x))|=\sup _{\substack{x \in M \\
\|x\|=1}}\|L(x)\|=\|L\|
\end{aligned}
$$

Definition 3.48 (Hermitian conjugate). Let \mathcal{H} be a Hilbert space, $L \in \mathcal{L}(\mathcal{H})$ a bounded operator, $L^{\prime} \in \mathcal{L}\left(\mathcal{H}^{*}\right)$ its Banach conjugate. Then we define $L^{*}=\Phi^{-1} \circ L^{\prime} \circ \Phi \in \mathcal{L}(\mathcal{H})$ to be the Hermitian conjugate of L.

Figure 7: Schematic illustration of the hermitian conjugate of a bounded operator.

Prop. 3.49.

$$
\langle x, L(y)\rangle=\left\langle L^{*}(x), y\right\rangle
$$

Proof.

$$
\langle x, L(y)\rangle=\left(\varphi_{x} \circ L\right)(y)=\left(L^{\prime}(\Phi(x))\right)(y)=\left\langle\left(\Phi^{-1} \circ L^{\prime} \circ \Phi\right)(x), y\right\rangle=\left\langle L^{*}(x), y\right\rangle
$$

Definition 3.50 (Hermitian operator). An operator $L \in \mathcal{L}(\mathcal{H})$ is called Hermitian, if $L^{*}=L$.

3.7 Compact Operators

Definition 3.51 (compact operator). Let M, N be Banach spaces. A linear operator $L: M \rightarrow N$ is called compact, if it maps bounded sets M to relatively compact sets in N. The space of all compact operators is denoted by $\mathcal{L}_{\mathrm{cpt}}(M, N)$.

Prop. 3.52 (characterization of compact operators). Equivalent definitions of a compact operator:
(i) L maps bounded sets M to relatively compact sets in N.
(ii) For any bounded sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ the bounded sequence $\left(L x_{n}\right)_{n \in \mathbb{N}}$ has a convergent subsequence.
(iii) If we denote $B_{1}=\{x \in M \mid\|x\| \leq 1\}$, then $L B_{1}$ is a relatively compact set.

Definition 3.53 (finite-rank operator). A linear operator $L: M \rightarrow N$ is called finite-rank if $L \in \mathcal{L}(M, N)$ and im (F) is a finite-dimensional space. The space of all finite-rank operators is denoted by $\mathcal{L}_{\mathrm{f}}(M, N)$.

Prop. 3.54 (properties of $\mathcal{L}_{\text {cpt }}(M, N)$). Let M, N be Banach spaces. Then:
(i) $\mathcal{L}_{\mathrm{f}}(M, N) \subseteq \mathcal{L}_{\mathrm{cpt}}(M, N) \subseteq \mathcal{L}(M, N)$.
(ii) If $\left(L_{n}\right)_{n \in \mathbb{N}}$ is a sequence in $\mathcal{L}_{\mathrm{cpt}}(M, N)$ and $L_{N} \xrightarrow{N \rightarrow \infty} L$, i.e. $\left\|L_{N}-L\right\| \xrightarrow{N \rightarrow \infty} L$, with $L \in \mathcal{L}(M, N)$, then $L \in \mathcal{L}_{\mathrm{cpt}}(M, N)$. I.e. $\mathcal{L}_{\mathrm{cpt}}(M, N)$ is closed.
(iii) If $L \in \mathcal{L}(M, N), S \in \mathcal{L}(N, P)$, then $S \circ L \in \mathcal{L}(M, P)$ is compact if L or S is compact. I.e. $\mathcal{L}_{\text {cpt }}(M, N)$ is a two-sided ideal in $\mathcal{L}(M, N)$.

Example 3.55 (Volterra integral operator is compact). The Volterra integral operator $L: C([0,1]) \rightarrow C([0,1]),(L f)(x)=$ $\int_{0}^{x} K(x, y) \cdot f(y) \mathrm{d} y$ is compact.

Theorem 3.56 (properties of $\mathcal{L}_{\text {cpt }}(M, N)$).
(i) $\mathcal{L}_{\mathrm{f}}(M, N) \subseteq \mathcal{L}_{\mathrm{cpt}}(M, N) \subseteq \mathcal{L}(M, N)$
(ii) $\mathcal{L}_{\text {cpt }}(M, N)$ is a closed subspace of $\mathcal{L}(M, N)$
(iii) $\mathcal{L}_{\text {cpt }}(M, N)$ is a two-sided ideal, i.e. for any $T, L \in \mathcal{L}(M, N), T L$ is compact whenever T or L is.

Proof.
(i) If $L \in \mathcal{L}_{\mathrm{cpt}}(M, N)$ then $L B_{1}$ is relatively compact hence bounded.
(ii) We need to prove that if $L_{n} \in \mathcal{L}_{\mathrm{cpt}}$ and $L_{n} \xrightarrow{n \rightarrow \infty} L$, i.e. $\left\|L_{n}-L\right\| \xrightarrow{n \rightarrow \infty} 0$, then $L \in \mathcal{L}_{\mathrm{cpt}}(M, N)$. Fix $\varepsilon>0$. We know L_{n} is compact, so there are $x_{1}, \ldots, x_{k} \in B_{1}$ such that

$$
\bigcup_{j=1}^{k} B_{\varepsilon}\left(L_{n} x_{j}\right) \supseteq L_{n} B_{1}
$$

I can find n large enough such that $\left\|L_{n}-L\right\| \leq \varepsilon$. For each x_{j} we have $\left\|L_{n} x_{j}-L x_{j}\right\| \leq \varepsilon$. It follows that

$$
\bigcup_{j=1}^{k} B_{2 \varepsilon}\left(L x_{j}\right) \supseteq L B_{1} .
$$

Definition 3.58 (matrix element). For $L \in \mathcal{L}(\mathcal{H})$ we define the (j, k)-th matrix element of L as $L_{j k}=\left\langle e_{j}, L e_{k}\right\rangle$.
Recall chopping infinite systems of linear equations in the introduction:

$$
\left(\begin{array}{cccc|c}
L_{11} & L_{12} & & & \\
L_{21} & L_{22} & & & \\
& & \ddots & & \\
& & & L_{N N} & \\
\hline & & & & \ddots
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\frac{x_{N}}{\vdots}
\end{array}\right)=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\frac{y_{N}}{\vdots}
\end{array}\right)
$$

If $\overline{\mathcal{L}_{\mathrm{f}}}=\mathcal{L}_{\mathrm{cpt}}$, then we can approximate compact operators by finite-rank operators, i.e. the chopping works. But at first, we have to define "chopping" rigorously.
Definition 3.59 (chopping of operators). Define P as orthogonal projection into span $\left\{e_{1}, \ldots, e_{N}\right\}$:

$$
P\left(\sum_{j=1}^{\infty} x_{j} e_{j}\right)=\sum_{j=1}^{N} x_{j} e_{j} \quad \text { or } \quad P(\cdot)=\sum_{j=1}^{N} e_{j}\left\langle e_{j}, \cdot\right\rangle
$$

"Chopping" of L is operator $P_{N} L P_{N}$. By definition $P_{N} L P_{N}$ is finite rank. Note that also $P_{N} L$ and $L P_{N}$ are finite rank.

Concering the matrix elements: Let $x \in \mathcal{H}, x=\sum_{j=1}^{\infty} x_{j} e_{j}, x_{j}=\left\langle e_{j}, x\right\rangle$. Isometry $\mathcal{L} \leftrightarrow \ell^{2}, x \mapsto\left(x_{j}\right)_{j=1}^{\infty}$.
For a bounded operator L :

$$
L x=L \sum_{j=1}^{\infty} x_{j} e_{j}=\sum_{j=1}^{\infty} x_{j}\left(L e_{j}\right)=\sum_{j=1}^{\infty} x_{j} \sum_{k=1}^{\infty} e_{k} \underbrace{\left\langle e_{k}, L e_{j}\right\rangle}_{=L_{k j}}=\sum_{k=1}^{\infty}\left(\sum_{j=1}^{\infty} L_{k j} x_{j}\right) e_{k}
$$

Projection:

$$
P_{N}(\cdot):=\sum_{n=1}^{\infty} e_{n}\left\langle e_{n}, \cdot\right\rangle
$$

Isometry $\mathcal{L} \leftrightarrow \ell^{2}$:

$$
\begin{aligned}
x & \mapsto\left(x_{n}\right)_{n=1}^{\infty} \\
L x & \mapsto\left(\sum_{j=1}^{\infty} L_{n j} x_{j}\right)_{n=1}^{\infty} \\
P_{N} L P_{N} x & \mapsto\left(\sum_{j=1}^{N} L_{n j} x_{j}\right)_{n=1}^{N} \text { for } n \leq N \\
P_{N} L P_{N} x & \mapsto 0 \text { for } n>N
\end{aligned}
$$

Remark: Decomposition of identity in Hilbert spaces:

$$
\sum_{n=1}^{\infty} e_{n}\left\langle e_{n}, \cdot\right\rangle=\mathrm{id}
$$

Theorem 3.60 (approximation of compact operators by finite-rank operators). Let \mathcal{H} be a separable Hilbert space and $L \in \mathcal{L}_{\mathrm{cpt}}(\mathcal{H})$. Then

$$
P_{N} L \xrightarrow{N \rightarrow \infty} L, \quad L P_{N} \xrightarrow{N \rightarrow \infty} L, \quad P_{N} L P_{N} \xrightarrow{N \rightarrow \infty} L . .
$$

In particular

$$
\overline{\mathcal{L}_{\mathrm{f}}(\mathcal{H})}=\mathcal{L}_{\mathrm{cpt}}(\mathcal{H})
$$

In order to prove theorem 3.60, we need:
Prop. 3.61 (characterization of relatively compact sets in Hilbert spaces). Let \mathcal{H} be a Hilbert space and $\left\{e_{n}\right\}_{n=1}^{\infty}$ basis.

A bounded set K is relatively compact iff

$$
\forall \varepsilon>0 \exists N \in \mathbb{N} \forall x \in K: \sum_{n=N}^{\infty}\left|\left\langle e_{j}, x\right\rangle\right|^{2}<\varepsilon
$$

Remark 3.62 (Remark to proposition 3.61). Recall Parseval's identity:

$$
\sum_{n=1}^{\infty}\left|\left\langle e_{j}, x\right\rangle\right|=\|x\|^{2}
$$

Here in proposition 3.61 in addition, N can be choosen uniformly.
Proof of proposition 3.61. Direction " \Rightarrow ":
If K is relatively compact, then there exist x_{1}, \ldots, x_{n} such that

$$
\bigcup_{j=1}^{n} B_{\varepsilon}\left(x_{j}\right) \supseteq K
$$

By Bessel inequality, there exists a N such that

$$
\forall k=1, \ldots, n: \sum_{j=N}^{\infty}\left|\left\langle e_{j}, x_{k}\right\rangle\right|^{2} \leq \varepsilon .
$$

Let $x \in K$, then there is a x_{j} such that $\left\|x-x_{j}\right\| \leq \varepsilon$. Then

$$
\begin{aligned}
& \sqrt{\sum_{j=N+1}^{\infty}\left|\left\langle e_{j}, x\right\rangle\right|^{2}} \\
& \text { calculation } \\
& \text { as } \stackrel{\text { in }}{=} \cdots\left(1-P_{N}\right) x\|=\|\left(1-P_{N}\right)\left(x-x_{j}\right)+\left(1-P_{N}\right) x_{j}\|\leq\|\left(1-P_{N}\right)\left(x-x_{j}\right)\|+\|\left(1-P_{N}\right) x_{j} \| \leq \varepsilon+\sqrt{\varepsilon},
\end{aligned}
$$

where we have used that $\left\|1-P_{N}\right\|=1$.
Proof of theorem 3.60. Only $\left\|P_{N} L-L\right\| \xrightarrow{N \rightarrow \infty} 0$. $\left\|P_{N} L-L\right\|=\left\|\left(1-P_{N}\right) L\right\|$. For each $\varepsilon \geq N$ it holds that $\left\|\left(1-P_{N}\right) L\right\| \leq \varepsilon$. Let $K=L B_{1}$, then $\left\|\left(1-P_{N}\right) L\right\|=\sup _{x \in B_{1}}\left\|\left(1-P_{N}\right) L x\right\|=\sup _{x \in K}\left\|\left(1-P_{N}\right) x\right\|$. Furthermore,

$$
\left\|\left(1-P_{N}\right) x\right\|^{2}=\sum_{n=N+1}^{\infty}\left|\left\langle e_{n}, x\right\rangle\right|^{2},
$$

because if $x=\sum_{n=1}^{\infty} e_{n}\left\langle e_{n}, x\right\rangle$ then

$$
\begin{aligned}
\left(1-P_{N}\right) x & =\sum_{n=N+1}^{\infty} e_{n}\left\langle e_{n}, x\right\rangle \\
\left\|\sum_{n=N+1}^{\infty} e_{n}\left\langle e_{n}, x\right\rangle\right\|^{2} & =\sum_{n=N+1}^{\infty}\left|\left\langle e_{n}, x\right\rangle\right|^{2} \quad \text { (Pythagoras). }
\end{aligned}
$$

We know that K is relatively compact, and so there exists a N such that $\forall x \in K: \sum_{n=N+1}^{\infty}\left|\left\langle e_{n}, x\right\rangle\right|^{2} \leq \varepsilon$. We conclude $\left\|\left(1-P_{N}\right) L\right\| \leq \varepsilon$

Remark 3.63. It is $\|$ id $-P_{N} \|=1$. Hope $P_{n} \xrightarrow{N \rightarrow \infty}$ id (but not true in this norm). For each $x\left\|P_{N} x-x\right\| \xrightarrow{N \rightarrow \infty} 0$. //

3.8 Weak Topology and Weak Convergence

Definition 3.64 (weak convergence). Let X be normed linear space. We say that $\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ converges weakly to X,

$$
x_{n} \xrightarrow{\mathrm{w}} x,
$$

if for all $\varphi \in X^{*}$ we have

$$
\varphi\left(x_{n}\right) \rightarrow \varphi(x) .
$$

Prop. 3.65 (basic properties of weak convergence).
(1) Weak limit is unique.
(2) If $x_{n} \longrightarrow x$ then $x_{n} \xrightarrow{\mathrm{w}} x$.

Proof.
(1) Suppose $x_{n} \xrightarrow{\mathrm{w}} x$ and $x_{n} \xrightarrow{\mathrm{w}} \tilde{x}$. Then for each $\varphi \in X^{*}$ we have $\varphi(x-\tilde{x})=0$. By existence of tangent there is $\varphi \in X^{*}$ such that $\varphi(x-\tilde{x})=\|x-\tilde{x}\|=0$.
(2) $\left|\varphi\left(x-x_{n}\right)\right| \leq\|\varphi\|\left|x-x_{n}\right| \quad \checkmark$

Definition 3.66 (weak*-convergence). Let X be a normed linear space and X^{*} its dual space. We say that for $\left(\varphi_{n}\right)_{n \in \mathbb{N}} \in$ $\left(X^{*}\right)^{\mathbb{N}}$

$$
\varphi_{n} \xrightarrow{\mathrm{w}^{*}} \varphi,
$$

if for all $x \in X$ we have

$$
\varphi_{n}(x) \longrightarrow \varphi(x)
$$

Remark 3.67 (illustration of weak and weak* convergence). Recall the canonical embedding $J: x \mapsto \varepsilon_{x}$ where $\varepsilon_{x}(\varphi)=$ $\varphi(x)$.

Figure 8: illustration of weak and weak ${ }^{*}$ convergence

Prop. 3.68 (basic properties of weak* convergence).
(a) Weak*-limit is unique
(b) If $\varphi_{n} \xrightarrow{\mathrm{w}} \varphi$ then $\varphi_{n} \xrightarrow{\mathrm{w}^{*}} \varphi$.

Proof.
(a) Omitted.
(b) Suppose that $\varphi_{n} \xrightarrow{\mathrm{w}} \varphi$. For all $\varepsilon \in X^{* *}, \varepsilon\left(\varphi_{n}\right) \longrightarrow \varepsilon(\varphi)$. We know that for each $x \in X$, we have

$$
\varphi_{n}(x)=\varepsilon_{x}\left(\varphi_{n}\right) \longrightarrow \varepsilon_{x}(\varphi)=\varphi(x)
$$

and hence $\varphi_{n} \xrightarrow{\mathrm{w}^{*}} \varphi$.
Prop. 3.69 (weak and weak* convergence in reflexive spaces). If X is reflexive, then notions of weak convergence and weak*-convergence coincide.

Proof. Let $\varphi_{n} \xrightarrow{\mathrm{w}^{*}} \varphi$. We know that for all $\varepsilon \in X^{* *}$, there exists $x \in X$ such that $\varepsilon=\varepsilon_{x}$. Then

$$
\varepsilon\left(\varphi_{n}\right)=\varphi_{n}(x) \longrightarrow \varphi(x)=\varepsilon(\varphi),
$$

and hence $\varphi_{n} \xrightarrow{\mathrm{w}} \varphi$.

Example 3.70.

(1) Consider $X=c_{0}, X^{*}=\ell^{1}, X^{* *}=\ell^{\infty}$.

Note $c_{0}{ }^{*}=\ell^{1}$: For each $\varphi \in c_{0}{ }^{*}$ there exists a unique $y \in \ell^{1}$ such that $\forall x \in c_{0}: \varphi(x)=\sum_{n=1}^{\infty} y_{n} x_{n}$. Consider sequence

$$
\begin{aligned}
e_{1} & =(1,0,0,0, \ldots), \\
e_{2} & =(0,1,0,0, \ldots), \\
e_{3} & =(0,0,1,0, \ldots), \ldots
\end{aligned}
$$

Claim:

(a) e_{n} does converge weak* $\mathrm{ly}, e_{n} \xrightarrow{\mathrm{w}^{*}} 0$.
(b) e_{n} does not converge weakly.

Proof:
(a) For each $x \in c_{0}$ we need to check that $e_{n}(x)=\sum_{j=1}^{\infty}\left(e_{n}\right)_{j} x_{j}=x_{n}$. Then it follows that $\lim _{n \rightarrow \infty} e_{n}(x)=$ $\lim _{n \rightarrow \infty} x_{n}=0=0(x)$.
(b) We have $\left(\ell^{1}\right)^{*}=\ell^{\infty}$. Let's take $y=(1,1,1, \ldots) \in \ell^{\infty}$. Then $y\left(e_{n}\right)=\sum_{j=1}^{\infty} y_{j}\left(e_{n}\right)_{j}=1$.
(2) Consider an arbitrary Hilbert space \mathcal{H}.

Claim: Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be an orthonormal set in \mathcal{H}, then $e_{n} \xrightarrow{\mathrm{w}} 0$.
Proof: By Riesz duality, for each $\varphi \in \mathcal{H}^{*}$ there exists $y \in \mathcal{H}$ such that

$$
\varphi(x)=\langle y, x\rangle
$$

Hence we need to check that for all $y \in \mathcal{H}$ each $\left\langle y, e_{n}\right\rangle \longrightarrow 0$. Bessel's inequality:

$$
\sum_{n=1}^{\infty}\left|\left\langle y, e_{n}\right\rangle\right|^{2} \leq\|y\|^{2}
$$

The sum is convergent, and hence for all $n \in \mathbb{N}$ each $\left|\left\langle y, e_{n}\right\rangle\right| \longrightarrow 0$. This proves the claim.
(3) Let $f \in L^{2}(\mathbb{R})$ and $\left(t_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ such that $t_{n} \longrightarrow \infty$, and consider $f_{n}(x):=f\left(x-t_{n}\right)$.

Claim: $f_{n} \xrightarrow{\mathrm{w}} 0$.
Proof: We need to prove that for each $g \in L^{2}(\mathbb{R})$ we have

$$
\int_{-\infty}^{+\infty} g(x) \cdot f\left(x-t_{n}\right) \mathrm{d} x \longrightarrow 0
$$

We calculate:

$$
\begin{aligned}
& \left|\int_{-\infty}^{t_{n} / 2} g(x) \cdot f\left(x-t_{n}\right) \mathrm{d} x+\int_{t_{n} / 2}^{+\infty} g(x) \cdot f\left(x-t_{n}\right) \mathrm{d} x\right| \\
& \leq \sqrt{\int_{-\infty}^{t_{n} / 2} g(x)^{2} \mathrm{~d} x} \cdot \sqrt{\int_{-\infty}^{t_{n} / 2} f\left(x-t_{n}\right)^{2} \mathrm{~d} x}+\sqrt{\int_{t_{n} / 2}^{+\infty} g(x)^{2} \mathrm{~d} x \cdot \int_{t_{n} / 2}^{+\infty} f\left(x-t_{n}\right)^{2} \mathrm{~d} x} \\
& \longrightarrow 0
\end{aligned}
$$

because, by dominated convergence theorem:

$$
\int_{-\infty}^{+t_{n} / 2} f\left(x-t_{n}\right)^{2} \mathrm{~d} x=\int_{-\infty}^{-t_{n} / 2} f(x)^{2} \mathrm{~d} x \longrightarrow 0
$$

Illustration: Shifting the function to infinity:

Figure 9: illustration for the proof of example 3.70.(3)
(4) Let $X=C([0,1])$. Then $f_{n} \xrightarrow{\mathrm{w}} 0$ iff the f_{n} 's are uniformly bounded and $\forall x \in[0,1]: f_{n}(x) \longrightarrow 0$.

Remark 3.71 (concentration compactness principle). What does it mean $x_{n} \xrightarrow{\mathrm{w}} 0$ if $\left\|x_{n}\right\|=1$.

$$
\begin{aligned}
& \stackrel{\text { Fourier }}{\text { transform }} \\
f_{n}(x)= & \begin{cases}\text { Example: } \\
\frac{1}{\sqrt{n}} & \text { for } x \in[0, n] \\
0 & \text { else }\end{cases} \\
f(x) \rightsquigarrow & f(x / \lambda), \lambda>0
\end{aligned}
$$

Figure 10: concentration compactness principle

Remark 3.72 (the dual space of the space of continuous functions). We have:
$\left(\{\text { space of continuous functions on }[0,1])^{*}=\right.$ space of Borel measures on $[0,1]$
Denote $X=C([0,1])$. If $\varphi \in X^{*}$, then $\varphi(f)=\int_{0}^{1} f(x) \mathrm{d} \mu_{x}$. Example $\mu_{x}=\delta(x)$ and $\varphi_{x}(f)=f(x)$.

Question: (X, \mathcal{T}) topological space. Suppose \mathcal{T} has more (open) sets then
(A) there are more contiunuous functions $X \rightarrow \mathbb{R}$ and less compact sets on X.
(B) there are more contiunuous functions $X \rightarrow \mathbb{R}$ and more compact sets on X.
(C) there are less contiunuous functions $X \rightarrow \mathbb{R}$ and less compact sets on X.
(D) there are less contiunuous functions $X \rightarrow \mathbb{R}$ and more compact sets on X.

Recall:

- A function $f:(X, \mathcal{T}) \rightarrow \mathbb{R}$ is continuous if $f^{-1}[] a, b[]$ is open
- A set K is compact iff each cover by open sets has a finite subcover

Answer: The correct answer is (A).

Prop. 3.73 (continuous functions map compact sets to compact sets). Continuous functions on a compact set achieves its minimum and maximum.

Weak topology:

- (X, \mathcal{T}) is a topological space
- We require that functions in X^{*} are continuous. This means that $\varphi \in X^{*}$, then you neeed that

$$
\varphi^{-1}[] a, b[] \text { open } \Leftrightarrow\{x \in X \mid a<\varphi(x)<b\} \text { open. }
$$

Definition 3.74 (weak topology). The weak topology is generated by finite intersections and unions of sets

$$
\{x|a<|\varphi(x)|<b\}
$$

A set U is weakly open if for each $x \in U$ there exists $\varphi_{1}, \ldots, \varphi_{n} \in X^{*}$ and $\varepsilon>0$ such that

$$
\tilde{U}_{X}:=\left\{y \in X\left|\forall j=1, \ldots, n:\left|\varphi_{j}(x)-\varphi_{j}(y)\right|<\varepsilon\right\} \subseteq U\right.
$$

Prop. 3.75 (convergence in weak topology $=$ weak convergence). A sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ converges to x w.r.t. the weak topology, if and only if $x_{n} \xrightarrow{\mathrm{w}} x$.

Proof. Proof of " \Rightarrow ": For each open set $U \ni x$ there exists n_{0} such that $\forall n \geq n_{0}: x_{n} \in U$. We need to show that $x_{n} \xrightarrow{\mathrm{w}} x$, i.e. $\forall \varphi \in X^{*}: \varphi\left(x_{n}\right) \longrightarrow \varphi(x)$. Let $\varepsilon>0$. In particular, $U_{x}=\{y| | \varphi(x)-\varphi(y) \mid<\varepsilon\}$ is open, so there exists n_{0} such that for $n>n_{0}$ we have $x_{n} \in U_{x}$, hence $\left|\varphi\left(x_{0}\right)-\varphi(x)\right|<\varepsilon$. We conclude $\varphi\left(x_{n}\right) \longrightarrow \varphi$.
Proof of " \Leftarrow ": See lecture notes.
Remark 3.76. Set of weakly converging sequences does not define weak topology. There are spaces where convergence weak convergence conincide, but not topology and weak topology.

Example 3.77 (Schur's lemma). A sequence $\left(x_{n}\right)_{n \in \mathbb{N}} \in \ell^{1}$ converges weakly iff it converges in $\|\cdot\|_{1}$-norm.
Lemma 3.78. Let X be an infinite-dimensional normed linear space. And let U be an weakly open set containinig 0 . Then there exists a closed non-zero subspace M such that $M \subseteq U$. In particular U is unbounded.

Proof. There exists $\varphi_{1}, \ldots, \varphi_{n}$ and $\varepsilon>0$ such that

$$
\tilde{U}=\left\{x| | \varphi_{j}(x) \mid<\varepsilon\right\} \subseteq U
$$

We claim that

$$
M=\bigcap_{j=1}^{n} \operatorname{ker}\left(\varphi_{j}\right) \subseteq \tilde{U}
$$

is non-zero (in the sense of $M \neq\{0\}$) closed subspace. Suppose that $M=\{0\}$, then the map

$$
L: X \rightarrow \mathbb{F}^{n}, x \mapsto\left(\varphi_{1}(x), \ldots, \varphi_{n}(x)\right)
$$

is injective (suppose that $L x=L \tilde{x}$, then $L(x-\tilde{x})=0$, hence $\left(\varphi_{1}(x-\tilde{x}), \ldots, \varphi_{n}(x-\tilde{x})\right)=(0, \ldots, 0)$, contradiction because there is no injective map infin.-dim. space \rightarrow finite-dim. space).

Remark 3.79. $x_{n} \xrightarrow{\mathrm{w}} 0,\left\|x_{n}\right\|=1$
(b)

Definition 3.80 (weak* topology). Let X^{*} be the dual of X. The weak* topology on X^{*} is generated by unions and finite intersections of

$$
\{\varphi|a<|\varphi(x)|<b\}, x \in X, a, b>0
$$

In particular $U \subseteq X^{*}$ is weak*-open if for each $\varphi \in U$ exists $x_{1}, \ldots, x_{n} \in X$ and $\varepsilon>0$ such that

$$
\left\{\psi\left|\left|\psi\left(x_{j}\right)-\varphi\left(x_{j}\right)\right|<\varepsilon\right\} \subseteq U\right.
$$

Prop. 3.81.

(a) If $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ converges to φ in weak* topology, then $\varphi_{n} \xrightarrow{\mathrm{w}^{*}} \varphi$.
(b) It is the weakest topology on X^{*} in which functions in $J[X]$ are continuous, where J denoted the canonical embedding.
(c) If X is reflexive, then weak topology on X^{*} and weak* topology on X^{*} conincide.

Remark 3.82.

Figure 11: Illustration of dual space and canonical embedding.

Where we are now?

- Landscape: $c, c_{0}, \ell^{p}, L^{p}, C([0,1]), C^{1}([0,1]), \ldots$
- Notions: Banach space, norm, compactness, linear operator, ...

Now, we're going towards the deep theorems of functional analysis.

4.1 Alaoglu Theorem and its Corollaries

Remark 4.1. Recall $e_{1}=(1,0,0, \ldots), e_{2}=(0,1,0, \ldots), \ldots$ in ℓ^{1} then $e_{n} \xrightarrow{\mathrm{w}^{*}} 0$ but $e_{n}{ }^{\mathrm{w}} 0$.
Theorem 4.2 (Alaoglu theorem). Let X be a Banach space. Then the closed unit ball in X^{*} is weak* compact.
Proof. Omitted.
Theorem 4.3 (Banach-Bourbaki theorem). Let X be a Banach space. Then the closed unit Ball is weakly compact iff X is reflexive.

Proof.

- Proof of " X reflexive \Rightarrow unit ball in X weakly compact":

Situation:

Claims:
(C1) If X is reflexive, then J is a homoeomorphism (X, weak top.) $\rightarrow\left(X^{* *}\right.$, weak* top.)
(C2) X is reflexive iff X^{*} is reflexive.
Proofs:

- Proof of (C2) in direction " \Rightarrow ":

If $\alpha \in X^{* * *}$ then $\alpha \circ J \in X^{*}$. We will show $\tilde{J}(\alpha \circ J)=\alpha . \varepsilon \in X^{* *}$, each $\varepsilon=\varepsilon_{x}=J_{x}$.

$$
\tilde{J}(\alpha \circ J)(\varepsilon)=\tilde{J}(\alpha \circ J)\left(\varepsilon_{x}\right)=\varepsilon_{x}(\alpha \circ J)=(\alpha \circ J)(x)=\alpha\left(\varepsilon_{x}\right)=\alpha(\varepsilon)
$$

- Proof of (C2) in direction " \Rightarrow ":

We don't need this direction here.

- Proof of "unit ball in X weakly compact $\Rightarrow X$ reflexive": Omitted.

Repitition:

Theorem 4.2 (Alaog/u theorem). A unit closed ball in a dual space of a Banach space X is weak* compact.

Theorem 4.3 (Banach-Bourbaki theorem). Suppose X is reflexive. Then $\overline{B_{1}(x)}$ is weakly compact.

4.2 [Digression] Existence of Solutions to Partial Differential Equations

Example 4.4 (heat equation). Heat equation:

$$
\begin{equation*}
-\Delta u+u=f \quad \text { where } \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \quad \text { and } \quad u \in L^{2}\left(\mathbb{R}^{d}\right) \tag{*}
\end{equation*}
$$

Repitition:

- Laplace operator $\Delta: \Delta u=\sum_{j=1}^{d} \frac{\partial^{2}}{\partial x_{j}{ }^{2}} u$
- Gradient operator $\nabla:\left(\frac{\partial u}{\partial x_{1}} u, \ldots, \frac{\partial}{\partial x_{d}} u\right)$

Applications:

- This describes heat distribution in a room.
- Similar differential equation for Black-Scholes equation which models prices on the stock market.

Remark:

- We skip technicalities (e.g. we require $u \in L^{2}\left(\mathbb{R}^{d}\right)$, although the consider Δu, it would be more correct to use Sobolev spaces.)

How can we solve ($*$)?

Steps to solve the heat equation

1. Rewrite the equation as minimization problem.

$$
\min _{v \in L^{2}\left(\mathbb{R}^{d}\right)} F(v), \quad F: L^{2}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{R}
$$

Spoiler: Using the Dirichlet principle, we will find:

$$
F(v):=\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla v(x)|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{d}} v(x)^{2} \mathrm{~d} x-\int_{\mathbb{R}^{d}} f(x) \cdot v(x) \mathrm{d} x
$$

2. Prove that F is bounded from below and weakly lower semi-continuous.
3. Use Banach-Bourbaki to conclude that F achieves its minimum.

$1^{\text {st }}$ step to solve the heat equation

Lemma 4.5 (Dirichlet principle). Let

$$
F(u):=\int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} \mathrm{~d} x+\frac{1}{2} \int_{\mathbb{R}^{d}} u(x)^{2} \mathrm{~d} x-\int_{\mathbb{R}^{d}} f(x) \cdot u(x) \mathrm{d} x,
$$

provided the integrals exist, otherwise $F(\omega):=\infty$. Suppose u is such that $F(u)<\infty$ and $F(u)=\inf _{v} F(v)$, then u solves ($*$).

Proof. Let $g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and let define $\tilde{F}: \mathbb{R} \rightarrow \mathbb{R}, \tilde{F}(\lambda):=F(u+\lambda g)$, then $\forall \lambda \in \mathbb{R}: \tilde{F}(0) \leq \tilde{F}(\lambda)$. We calculate

$$
\begin{aligned}
\tilde{F}(\lambda) & =\left(\int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} \mathrm{~d} x+2 \lambda \int_{\mathbb{R}^{d}} \nabla w(x) \cdot \nabla g(x) \mathrm{d} x+\lambda^{2} \int_{\mathbb{R}^{d}}|\nabla g(x)|^{2} \mathrm{~d} x\right) \\
& +\frac{1}{2}\left(\int_{\mathbb{R}^{d}} u(x)^{2} \mathrm{~d} x+2 \lambda \int_{\mathbb{R}^{d}} w(x) \cdot g(x) \mathrm{d} x+\lambda^{2} \int_{\mathbb{R}^{d}} g(x)^{2} \mathrm{~d} x\right) \\
& -\left(\int_{\mathbb{R}^{d}} f(x) \cdot w(x) \mathrm{d} x+\lambda \int_{\mathbb{R}^{d}} f(x) \cdot g(x) \mathrm{d} x\right),
\end{aligned}
$$

where we have used that

$$
|\nabla w+\lambda \nabla g|^{2}=\langle\nabla w+\lambda \nabla g, \nabla w+\lambda \nabla g\rangle=|\nabla w|^{2}+2 \lambda\langle\nabla w, \nabla g\rangle+\lambda^{2}|\nabla g|^{2} .
$$

We note that \tilde{F} is a quadratic form in λ, and because 0 minimizes \tilde{F}, we have $\tilde{F}^{\prime}(0)=0$.

$$
\begin{aligned}
\tilde{F}^{\prime}(0)=0 & \Leftrightarrow 2 \int_{\mathbb{R}^{d}} \nabla w(x) \cdot \nabla g(x) \mathrm{d} x+\int_{\mathbb{R}^{d}} u(x) \cdot g(x) \mathrm{d} x-\int_{\mathbb{R}^{d}} f(x) \cdot g(x) \mathrm{d} x=0 \\
& \stackrel{(*)}{\Leftrightarrow} 2 \int_{\mathbb{R}^{d}}-\Delta w(x) \cdot g(x) \mathrm{d} x+\int_{\mathbb{R}^{d}} w(x) \cdot g(x) \mathrm{d} x-\int_{\mathbb{R}^{d}}(-2 \Delta u+u-f) \cdot g(x) \mathrm{d} x \\
& \Leftrightarrow
\end{aligned}
$$

step at $(*)$: multivariable version of intgegration by parts $=$ stokes theorem / green identity.
Division by factor 2 yields the claim.
$3^{\text {rd }}$ step to solve the heat equation

Definition 4.6 (lower semi-continuity). Function $F: X \rightarrow \mathbb{R}$ on a topological space X is lower semi-continuous if for all $\alpha \in \mathbb{R}$ the set $\{x \in X \mid F(x)>\alpha\}$ is open, or equivalently, if $x_{\alpha} \rightarrow x$ implies $F(x) \leq \liminf _{x_{\alpha} \rightarrow x} F\left(x_{\alpha}\right)$.

Figure 12: Example of lower semi-continuous (left), upper semi-continuous function (middle), and continuous function (right).

Lemma 4.7. A lower semi-continuous functions achieves its minimum on a compact set.
Proof. We assume compactness \Leftrightarrow sequential compactness. Let $m:=\inf _{x \in K} F(x)$. Let $\left(x_{\alpha}\right)_{\alpha}$ be a sequence in K such that $F\left(x_{\alpha}\right) \rightarrow m$. Because K is compact, there exists a subsequence $x_{\alpha_{n}} \rightarrow x \in K$. Then $m \leq F(x) \leq$ $\liminf _{x_{\alpha} \rightarrow x} F\left(x_{\alpha}\right)=m$, and hence $F(x)=m$.

Consequence:
Lemma 4.8. Let X be a reflexive Banach space and $F: X \rightarrow \mathbb{R}$ a function. Assume:
(i) $\exists \alpha \in \mathbb{R}:\{x \in X \mid F(x) \leq \alpha\}$ bounded
(ii) F weakly lower semi-continuous

Then F achieves its infimum on X.
Proof. The set $\{x \in X \mid F(x) \leq \alpha\}$ is bounded and weakly closed, hence by Banach-Bourbaki it is weakly compact. Then by lemma above, it achieves minimum m on $\{x \in X \mid F(x) \leq \alpha\}$, and therefore $m \leq \alpha$, so it is also a minimum on X.

Lemma 4.9. Let X be a Banach space, then $\|\cdot\|$ is weakly lower semi-continuous.
Proof. Exercise.

$2^{\text {nd }}$ step to solve the heat equation

Check conditions: Let $\alpha>0$.

$$
\begin{gathered}
\frac{1}{2} \int_{\mathbb{R}^{d}}|\nabla v(x)|^{2} \mathrm{~d} x+\frac{1}{2} \int v(x)^{2} \mathrm{~d} x-\int f(x) \cdot v(x) \mathrm{d} x \leq \alpha \\
\text { LHS }=\frac{1}{2} \int|\nabla v(x)|^{2} \mathrm{~d} x+\frac{1}{2} \int v(x)^{2} \mathrm{~d} x-\int f(x) \cdot v(x) \mathrm{d} x \stackrel{\mathrm{CS} \neq \frac{1}{2}}{2}\|v\|^{2}-\sqrt{\int f(x)^{2} \mathrm{~d} x} \sqrt{\int v(x)^{2}}=\frac{1}{2}\|v\|^{2}-\|f\|\|v\|
\end{gathered}
$$

Therefore:

$$
\frac{1}{2}\|v\|^{2}-\|f\|\|v\| \leq \alpha
$$

So property (i) follows.

$$
F(v)=\frac{1}{2} \int\|\nabla v(x)\|^{2} \mathrm{~d} x+\frac{1}{2}\|v\|^{2}-\underbrace{\int f(x) \cdot v(x) \mathrm{d} x}_{\text {weakly continuous }}
$$

Claim:

$$
\|\cdot\| \text { is weakly continuous }
$$

Proof: See lemma above.
Claim:

$$
\int_{\mathbb{R}^{d}}|\nabla v(x)|^{2} \mathrm{~d} x \text { is weakly semi-continuous }
$$

Proof: Let $v_{\alpha} \xrightarrow{\mathrm{w}} v$ where $v_{\alpha} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$. I need to compute $\lim \inf _{v_{\alpha} \rightarrow v} \int_{\mathbb{R}^{d}}\left|\nabla v_{\alpha}(x)\right|^{2} \mathrm{~d} x$.

$$
\begin{aligned}
& \left\|\left|\nabla v_{\alpha}\right|^{2}\right\|^{2}=\int_{\mathbb{R}^{d}}\left|\nabla v_{\alpha}(x)\right|^{2} \\
& =\sup _{\substack{g \in C C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \\
\|g\|=1}}\left|\int_{\mathbb{R}^{d}} g(x) \cdot \nabla v_{\alpha}(x) \mathrm{d} x\right| \\
& =\sup _{\substack{g \in \in\left(\mathbb{R}^{\infty}\right) \\
\|g\|=1}}\left|-\int_{\mathbb{R}^{d}} \nabla g(x) \cdot v_{\alpha}(x) \mathrm{d} x\right| \\
& \liminf _{v_{\alpha} \rightarrow v}| |\left|\nabla v_{\alpha}\right|^{2} \|=\liminf _{v_{\alpha} \rightarrow v} \sup _{\substack{g \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \\
\|g\|=1}}\left|\int_{\mathbb{R}^{d}} \nabla g(x) \cdot v_{\alpha}(x) \mathrm{d} x\right| \\
& \leq \sup _{\substack{g \in C\left(\begin{array}{c}
\infty \\
\\
\|g\|=1 \\
d
\end{array}\right)}}\left|\int_{\mathbb{R}^{d}} \nabla g(x) \cdot v_{\alpha}(x) \mathrm{d} x\right| \\
& \leq \sup _{\substack{\left.\left.g \in C_{0}^{0}\left(\mathbb{(R}^{d}\right) \\
\| g\right)^{d}\right)}}\left|\int_{\mathbb{R}^{d}} g(x) \cdot \nabla v_{\alpha}(x) \mathrm{d} x\right| \\
& \leq \sup _{\substack{g \in C\left(\mathbb{R}^{d}\right) \\
\|g\|=1}} \sqrt{\int g(x)^{2} \mathrm{~d} x} \sqrt{\int|\nabla v(x)|^{2} \mathrm{~d} x} \\
& \leq\left\||\nabla v|^{2}\right\|
\end{aligned}
$$

Claim:
A function $v \mapsto \int_{\mathbb{R}^{d}}|\nabla v(x)|^{2} \mathrm{~d} x$ is weakly lower semi-continuous on $L^{2}\left(\mathbb{R}^{d}\right)$.
Let $v_{\alpha} \xrightarrow{\mathrm{w}} v, v_{\alpha} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

$$
\begin{aligned}
\liminf _{v_{\alpha} \rightarrow v} \sqrt{\int_{\mathbb{R}^{d}}\left|\nabla v_{\alpha}(x)\right| \mathrm{d} x} & =\liminf _{v_{\alpha} \rightarrow v}\left\|\nabla v_{\alpha}\right\| \\
& =\operatorname{limin}_{v_{\alpha} \rightarrow v} \sup _{f \in C_{0}^{\infty},\|f\|=1}\left|\left\langle f, \nabla v_{\alpha}\right\rangle\right| \\
& =\liminf _{v_{\alpha} \rightarrow v} \operatorname{sip}_{f \in C_{0}^{\infty},\|f\|=1}\left|\left\langle\nabla f, v_{\alpha}\right\rangle\right| \\
& \geq \sup _{f \in C_{0}^{\infty},\|f\|=1} \lim _{v_{\alpha} \rightarrow v} \inf ^{\prime}\left|\left\langle\nabla f, v_{\alpha}\right\rangle\right| \\
& =\sup _{f \in C_{0}^{\infty},\|f\|=1}|\langle\nabla f, v\rangle| \\
& =\|\nabla v\|
\end{aligned}
$$

Where we have used that:

$$
\left\langle\nabla f, v_{\alpha}\right\rangle=\int_{\mathbb{R}^{d}} \nabla f(x) \cdot v_{\alpha}(x) \mathrm{d} x=\sum_{j} \int_{\mathbb{R}^{d}} f_{j}(x) \cdot \frac{\partial v_{\alpha}}{\partial x_{j}}(x) \mathrm{d} x=-\sum_{j} \int_{\mathbb{R}^{d}} \frac{\partial f_{j}}{\partial x_{j}}(x) \cdot v_{\alpha}(x) \mathrm{d} x=-\int_{\mathbb{R}^{d}} \nabla f(x) \cdot v_{\alpha}(x) \mathrm{d} x
$$

Note that:

$$
\begin{gathered}
\liminf _{x_{\alpha} \rightarrow x}=\inf \text { cluster points } \\
\operatorname{infx}_{x \in X} \sup _{y \in Y} F(x, y) \geq \sup _{y \in Y} \inf _{x \in X} F(x, y)
\end{gathered}
$$

Conclude:

$$
\forall y \in Y: \text { LHS } \geq \inf _{x \in X} F(x, y) \quad \therefore \quad \text { LHS } \geq \sup _{y \in Y} \inf _{x \in X} F(x, y)
$$

4.3 Baire Category Theorem and its Corollaries

Question: Let X, Y be normed linear spaces and $L: X \rightarrow Y$ be a linear operator. Suppose that there exists a ball $B_{\varepsilon}(z)$ in X such that $L\left[B_{\varepsilon}(z)\right]$ is a bounded set in Y. Is L then a bounded map?

Prop. 4.10. Let X, Y be normed linear spaces and $L: X \rightarrow Y$ be a linear operator. Suppose that there exists a ball $B_{\varepsilon}(z)$ in X such that $L\left[B_{\varepsilon}(z)\right]$ is a bounded set in Y. Then L is a bounded map?

Proof. We have $B_{\varepsilon}(z)=z+B_{\varepsilon}(0)$, and so $L\left[B_{\varepsilon}(0)\right]=B_{\varepsilon}(z)-L z$ is bounded, and $B_{1}(0)=\frac{1}{\varepsilon} L\left[B_{\varepsilon}(0)\right]$ is bounded set. Let $x \in B_{1}(0)$, then $y=z+\varepsilon \in B_{\varepsilon}(z)$. Then, if $\forall y \in B_{\varepsilon}(z):\|L y\| \leq M$, we have

$$
\|L x\|=\left\|L \frac{y-z}{\varepsilon}\right\| \leq \frac{1}{\varepsilon} \cdot(\|L y\|+\|L z\|) \leq \frac{2 M}{\varepsilon}
$$

Definition 4.11 (interior and closure). Let (X, \mathcal{T}) be a topological space and $A \subseteq X$ a subset. We define:

Figure 13: Interior and closure of a subset of a topological space.
Definition 4.12 (nowhere dense). A set A is called nowhere dense if $\operatorname{int}(\operatorname{cl}(A))=\emptyset$.
Theorem 4.13 (Baire category theorem). A Banach space X cannot be a countable union of nowhere dense sets.
Proof. By contradiction.

- Let $x_{1} \notin \overline{A_{1}}$ and $B_{r_{1}}(x)$ be a small ball such that $\overline{B_{r_{1}}\left(x_{1}\right)} \cap \overline{A_{1}}=\emptyset$ and $r_{1}<1$.
- Let $x_{2} \in B_{r_{2}}\left(x_{1}\right)$ and $B_{r_{2}}\left(x_{2}\right)$ such that $\overline{B_{r_{1}}} \supseteq B_{r_{2}}$ and $B_{r_{2}} \cap \overline{A_{2}}=\emptyset$ and $r_{2}<\frac{1}{2}$.
- Inductively: x_{n} and $B_{r_{n}}\left(x_{n}\right)$ such that $\overline{B_{r_{n}}} \subseteq B_{r_{n-1}}$ and $B_{r_{n}} \cap \overline{A_{n}}=\emptyset$ and $r_{n}<\frac{1}{2^{n}}$.

Let $m, n>N$, then $x_{m}, x_{n} \in B_{r_{N}}\left(x_{N}\right)$,

$$
\left\|x_{n}-x_{m}\right\| \leq\left\|x_{n}-x_{N}\right\|+\left\|x_{m}-x_{N}\right\| \leq \frac{2}{2^{N}}
$$

therefore $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence, and hence x_{n} convergent to a point $x, x \xrightarrow{n \rightarrow \infty} x$.

On the other hand, x_{n} for $n>N$ is such that $\operatorname{dist}\left(x_{n}, \overline{A_{n}}\right)>\varepsilon>0$, and therefore $x \notin A_{n}$ for any N. Contradicition with $X=\bigcup_{n} A_{n}$.

Remark 4.14 (categories). Why category? A set A is called first category, if A is a countable union of nowhere dense sets. Anything else is second category.

Remark 4.15. Algebraic or Hamel basis on X. (If X is infinite dimensional Banach space, the Hamel basis is uncountable).

Example 4.16. Let A be a set of functions in $C([0,1])$ such that $f \in A$ if there is $x \in X$ such that f is differentiable at x. Then A is a set of first category, and therefore there exists $f \in C([0,1])$ such that f is nowhere differentiable.

Theorem 4.17 (uniform boundedness principle). Let X be a Banach space and Y be a normed linear space. Let $\mathcal{F} \subseteq \mathcal{L}(X, Y)$. Then the following is equivalent:
(i) pointwise bound: $\forall x \in X: \sup _{L \in \mathcal{F}}\|L x\|<\infty$
(ii) uniform bound: $\sup _{L \in \mathcal{F}}\|L\|<\infty$

Proof."(ii) \Rightarrow (i)": $\|L x\| \leq\|L\|\|x\|$."(i) \Rightarrow (ii)":
Let

$$
A_{n}:=\{x \in X \mid \forall L \in \mathcal{F}:\|L x\| \leq n\}=\bigcap_{L \in \mathcal{F}}\{x \in X \mid\|L x\| \leq n\}
$$

Claim (i), then $X=\bigcup_{n \in \mathbb{N}} A_{n}$, and hence by the Baire category theorem there exists N such that $\overline{A_{N}}$ has non-empty interior. Then there exists $z \in \overline{A_{N}}$ and $\varepsilon>0$ such that $B_{\varepsilon}(z) \subseteq \overline{A_{N}}$. Therefore $L\left[B_{\varepsilon}(z)\right]$ is bounded for all $y \in B_{\varepsilon}(z)$, i.e. $\|L y\| \leq N$. If for all $L \in \mathcal{F}$ it holds that $\forall y \in B_{\varepsilon}(z):\|L y\| \leq N$, then it follows that for all $L \in \mathcal{F}$ we have $\|L\| \leq \frac{2 N}{\varepsilon}$. So, for all $L \in \mathcal{F} L$ is bounded.

Remark 4.18 (counter-example). Counter-example:

$$
f(x, n)=\frac{x}{x^{2}+n^{-2}}
$$

Then $\forall x \in X: \sup _{n \in \mathbb{N}} f(x, n)$ bounded, but $\sup _{n \in \mathbb{N}} \sup _{x \in X} f(x, n)$ not bounded, i.e. $\longrightarrow \infty$.
Theorem 4.19 (Banach-Steinhaus theorem). Let X be a Banach space and Y be a normed linear space. Let $\left(L_{n}\right)_{n \in \mathbb{N}} \in$ $(\mathcal{L}(X, Y))^{\mathbb{N}}$ be a sequence of maps. Suppose that for each $x \in X$ the $\operatorname{limit} \lim _{n \rightarrow \infty} L_{n} x$ exists. Denote $L: X \rightarrow$ $Y, L x=\lim _{n \rightarrow \infty} L_{n} x$. Then $L \in \mathcal{L}(X, Y)$, in particular L is continuous.

Proof. Later.

Repitition:

Theorem 4.13 (Baire category theorem). A complete metric space X cannot be countable union of its nowhere dense sets.

Theorem 4.17 (uniform-boundedness principle). Let \mathcal{F} be family of bounded linear maps $X \rightarrow Y$, where X is a Banach space, then

$$
\left(\forall x \in X: \sup _{L \in \mathcal{F}}\|L x\|<\infty\right) \Leftrightarrow\left(\sup _{L \in \mathcal{F}}\|L\|\right)
$$

Remark 4.20. Let $f \in C([0,1])$ and $\varepsilon>0$.

Figure 14: ε-ball around function $f=\varepsilon$ strip following the function f.

Lemma 4.21. $C^{\infty}([0,1])$ is dense in $C([0,1])$.
Proof. Let $f \in C([0,1])$, then mollifier f_{δ} is

$$
f_{\delta}(x):=\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi} \delta} \exp \left(-\frac{(x-y)^{2}}{2 \delta^{2}}\right) \cdot f(y) \mathrm{d} y
$$

Graph of $\frac{1}{\sqrt{2 \pi \delta}} \exp \left(-\frac{t^{2}}{2 \delta^{2}}\right)$:

Figure 15: Graph of $\frac{1}{\sqrt{2 \pi} \delta} \exp \left(-\frac{t^{2}}{2 \delta^{2}}\right)$.

Note that

$$
\forall \delta>0:: f_{\delta} \in C^{\infty}([0,1]), \quad f_{\delta}(x) \xrightarrow[\text { uniformly }]{\delta \rightarrow 0} f(x) .
$$

Theorem 4.22 (set of somewhere differentiable functions is first category set in $C([0,1])$). Let

$$
A=\left\{f \in C([0,1]) \mid \exists x \in[0,1]: f^{\prime}(x) \text { exists }\right\}
$$

where

$$
f^{\prime}(x) \text { exists } \Leftrightarrow \lim _{y \rightarrow x} \frac{f(x)-f(y)}{x-y} \text { exists. }
$$

The set $A \subseteq C([0,1])$ is a first category set. In particular $A \neq C([0,1])$.
Proof. We express

$$
A=\bigcup_{n, m} A_{n, m}
$$

where $A_{n, m}$ are closes nowhere dense sets.

$$
A_{n, m}=\left\{\left.f \in C([0,1])\left|\exists x \forall y, 0<|x-y|<\frac{1}{m}: \Rightarrow\right| \frac{f(x)-f(y)}{x-y} \right\rvert\, \leq n\right\}
$$

If $f \in A$, then exists x for which $(*)$ exists, then exists n, m such that $f \in A_{n, m}$. It follows that $A=\bigcup_{n, m} A_{n, m}$.

Closed: Let $f_{k} \in A_{n, m}$ such that $f_{k} \longrightarrow f \in C([0,1])$. Then there exists points x_{k} such that for all y satisfying $0<\left|x_{k}-y\right|<\frac{1}{m}$ it holds that $\left|\frac{f_{k}\left(x_{k}\right)-f_{k}(y)}{x_{k}-y}\right| \leq n$. We have a sequence $x_{k} \in[0,1]$, so there exists a subsequence $x_{k} \rightarrow x \in C([0,1])$. Thne $f_{k}\left(x_{k}\right) \rightarrow f(x)$. Then we have

$$
\forall y, 0<|x-y|<\frac{1}{m}:\left|\frac{f(x)-f(y)}{x-y}\right|=\lim _{k \rightarrow \infty}\left|\frac{f_{k}\left(x_{k}\right)-f_{k}(y)}{x_{k}-y}\right| \leq n
$$

Nowhere dense: Since $A_{n, m}$ is closed, we need to check that no ball is inside $A_{n, m}$.
Let $f \in A_{n, m}$ and $\varepsilon>0$, then there exists $h \in B_{\varepsilon}(f)$ such that $h \notin A_{n, m}$.
For function g :

$$
\sup _{\substack{x, y \\ x \neq y}}\left|\frac{g(x)-g(y)}{x-y}\right|<M
$$

such that g is smooth

Claim: The function $g=g+P$ does not belong to $A_{n, m}$.

$$
\left|\frac{P(x)-P(y)}{x-y}\right| \geq M+n+1 \text { provided } 0<|x-y|<\frac{3}{\varepsilon(M+n+1)}
$$

Figure 16: ...

$$
\left|\frac{h(x)-h(y)}{x-y}\right|=\left|\frac{g(x)-g(y)}{x-y}+\frac{P(x)-P(y)}{x-y}\right|
$$

Then:

$$
\inf _{y: 0<|x-y|<\frac{3}{\varepsilon(M+n+1)}}\left|\frac{h(x)-h(y)}{x-y}\right| \geq M+n+1-M=n+1>n
$$

Therefore:

$$
h \notin A_{n}, m
$$

Note:

$$
\begin{gathered}
|a+b| \geq||a|-|b|| \\
\|P\|<\frac{\varepsilon}{3}, \quad\|f-g\|<\frac{\varepsilon}{3}, \quad\|f-g-P\| \leq\|f-g\|+\|P\| \leq \frac{2 \varepsilon}{3}
\end{gathered}
$$

Theorem 4.19 (Banach-Steinhaus theorem). Let X be a Banach space and $L_{n} \in \mathcal{L}(X, Y)$. Suppose that for all $x \in X$ $\lim _{n \rightarrow \infty} L_{n} x$ exists and denote $L x:=\lim _{n \rightarrow \infty} L_{n} x$. Then $L \in \mathcal{L}(X, Y)$.

Proof. L is linear. L is bounded since $L_{n} x$ converges for all x. Therefore

$$
\forall x \in X: \sup _{n \in \mathbb{N}}\left\|L_{n} x\right\|<\infty \quad \text { uniform boundedness principle } \quad \sup _{n \in \mathbb{N}}\left\|L_{n}\right\|<\infty
$$

Then let M such that $\sup _{n \in \mathbb{N}}\left\|L_{n}\right\|<M$, then we have

$$
\|L x\|=\lim _{n \rightarrow \infty}\left\|L_{n} x\right\| \leq \sup _{n \in \mathbb{N}}\left\|L_{n} x\right\| \leq \sup _{n \in \mathbb{N}}\left\|L_{n}\right\|\|x\| \leq M\|x\|
$$

Prop. 4.23. Suppose that X is a normed linear space and $\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}$ is weakly converging. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded.

Theorem 4.24. Let $\left(x_{n}\right)_{n \in \mathbb{N}}$ be a bounded sequence $\left(\sup _{n \in \mathbb{N}}\left\|x_{n}\right\| \leq \infty\right)$ in a reflexive Banach space. Then $\left(x_{n}\right)_{n \in \mathbb{N}}$ has a weakly converging subsequence.
Rephrasing: The closed unit ball in a reflexive Banach space is weakly sequentially compact.
Remark 4.25 (nets). Nets is a generalization of sequences, e.g. they fix the difference "compactness \leftrightarrow sequential compactness".

Prop. 4.26 (closed subspaces of reflexive Banach spaces). Let X be reflexive Banach space and Y a closed subspace. Then:
(a) Y is reflexive Banach space.
(b) If Y is separable, then Y^{*} is separable.

Proof.
(a) Let $\tilde{\varphi} \in Y^{*}$ and $\varphi \in X^{*}$. If $\varphi \in X^{*}$ then $\left.\varphi\right|_{Y} \in Y^{*}$. If $\tilde{\varepsilon} \in Y^{* *}$ then $\varepsilon \in X^{* *}, \varepsilon(\varphi)=\tilde{\varepsilon}\left(\left.\varphi\right|_{Y}\right)$.

We need to prove that for all $\tilde{\varepsilon} \in Y^{* *}$ there exists $y \in Y$ such that $\tilde{\varepsilon}(\tilde{\varphi})=\tilde{\varphi}(y)$, i.e. $\tilde{\varepsilon}=\tilde{J}_{y}$. We know that there exists $x \in X$ such that $\varepsilon(\varphi)=\varphi(x)$. Suppose that $x \notin Y$, then there exists $\varphi \in X^{*}$ such that $\varphi(x)=1$ and $\left.\varphi\right|_{Y}=0$. Then

$$
0=\tilde{\varepsilon}\left(\left.\varphi\right|_{Y}\right)=\varepsilon(\varphi)=\varphi(x)=1
$$

contradicition, hence $x \in Y$. We need to prove that for all $\tilde{\varphi} \in Y^{*}$ indeed $\tilde{\varepsilon}(\tilde{\varphi})=\tilde{\varphi}(y)$.
(b) Omitted.

Question: Let $L \in \mathcal{L}(X, Y)$ and suppose $x_{n} \xrightarrow{\mathrm{w}} x$; does it imply that $L x_{n} \xrightarrow{\mathrm{w}} L x$?
Answer: Yes.
Proof: If $\varphi \in Y^{*}$.

$$
\left(L^{\prime}(\varphi)\right)\left(x_{n}\right)=\varphi\left(L\left(x_{n}\right)\right) \longrightarrow \varphi(L(x))=\left(L^{\prime}(\varphi)\right)(x), \quad\|L\|=\left\|L^{\prime}\right\|
$$

Figure 17: Illustration of the dual of a linear map.
Theorem (later): Suppose that $L \in \mathcal{L}(X, Y)$ is compact. Then $x_{n} \xrightarrow{\mathrm{w}} x$ implies $L x_{n} \longrightarrow L x$.
Prop. 4.27 (closed subspaces of reflexive Banach spaces). Let X be a reflexive Banach space and Y a closed subspace of X. Then Y is a reflexive Banach space.

$$
\begin{aligned}
& \left.X^{*} \ni \varphi \longrightarrow \varphi\right|_{Y} \in Y^{*} \\
& X^{* *} \ni \varepsilon \longleftarrow \tilde{\varepsilon} \in Y^{* *}
\end{aligned} \quad \varepsilon(\varphi):=\tilde{\varepsilon}\left(\left.\varphi\right|_{Y}\right)
$$

Proof. We proved that there exists $x \in Y$ such that $\varepsilon(\varphi)=\varphi(x)$. We need to check for all $\tilde{\varphi} \in Y^{*}$ we have $\tilde{\varepsilon}(\tilde{\varphi})=\tilde{\varphi}(x)$. By Hahn-Banach there exists $\varphi \in X^{*}$ such that $\left.\varphi\right|_{Y}=\tilde{\varphi}$. Then we have

$$
\tilde{\varepsilon}(\tilde{\varphi})=\varepsilon(\varphi)=\varphi(x) \stackrel{x \in Y \text { and }\left.\varphi\right|_{Y}=\tilde{\varphi}}{=} \tilde{\varphi}(x) .
$$

Prop. 4.28 (dual space of separable reflexive Banach spaces is separable). If X is separable reflexive Banach space, then X^{*} is separable.

Proof. Omitted.
Theorem 4.29. Let X be reflexive Banach space and $\left(x_{n}\right)_{n=1}^{\infty}$ a bounded sequence. Then there exists weakly converging subsequence.

Proof. Let $Y=\overline{\operatorname{span}\left(\left\{x_{n}\right\}_{n=1}^{\infty}\right)}$, then $Y \subseteq X$ and it is a closed linear subspace. We know that Y is reflexive and Y^{*} is separable (because $Y \ni y \simeq \sum_{n=1}^{N} \alpha_{n} x_{n}$, now choose $\alpha_{n} \in \mathbb{Q}$). We need to prove that there exists subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left(\varphi\left(x_{n_{k}}\right)\right)_{k \in \mathbb{N}}$ converges for all $\varphi \in Y^{*}$.

- $\left(\varphi\left(x_{n}\right)\right)_{n \in \mathbb{N}}$ is a bounded sequence in $\mathbb{F},\left|\varphi\left(x_{n}\right)\right| \leq\|\varphi\|\left\|x_{n}\right\|$.
- We have $\varphi_{1}, \varphi_{2}, \ldots \in Y^{*}$ such that $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is dense in Y^{*}.

We have a countable number of sequences $\left(\varphi_{n}\left(x_{n}\right)\right)_{n \in \mathbb{N}}$.
Claim: We can find a subsequence $\left(y_{n}\right)_{n \in \mathbb{N}}$ of $\left(x_{n}\right)_{n \in \mathbb{N}}\left(y_{n}=x_{J(n)}\right.$, where $J: \mathbb{N} \rightarrow \mathbb{N}$ and φ is non-decreasing) such that $\left(\varphi_{k}\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ converges for all $k \in \mathbb{N}$.
Diagonal trick:

- Let $\left(x_{n}^{(1)}\right)_{n \in \mathbb{N}}$ be a subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left(\varphi_{1}\left(x_{n}^{(1)}\right)\right)_{n \in \mathbb{N}}$ converges.
- Let $\left(x_{n}^{(2)}\right)_{n \in \mathbb{N}}$ be a subsequence of $\left(x_{n}^{(1)}\right)_{n \in \mathbb{N}}$ such that $\left(\varphi_{2}\left(x_{n}^{(2)}\right)\right)_{n \in \mathbb{N}}$ converges.
- Let $\left(x_{n}^{(k)}\right)_{n \in \mathbb{N}}$ be a subsequence such that $\left(\varphi_{1}\left(x_{n}^{(k)}\right)\right)_{n \in \mathbb{N}}, \ldots,\left(\varphi_{k}\left(x_{n}^{(k)}\right)\right)_{n \in \mathbb{N}}$ converges.
- Put $y_{n}:=x_{n}^{(n)}$, then $\left(\varphi_{k}\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ converges for all k : Fix k, then $\left(y_{n}\right)_{n \in \mathbb{N}}$ for $n \geq k$ is a subsequence of $x_{n}^{(k)}$.

We got $\left(y_{n}\right)_{n \in \mathbb{N}}$ subsequence of $\left(x_{n}\right)_{n \in \mathbb{N}}$ such that $\left(\varphi_{k}\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ converges for all $k \in \mathbb{N}$. Hence for all $\varphi \in Y^{*}$ each $\left(\varphi\left(y_{n}\right)\right)_{n \in \mathbb{N}}$ converges. Let ε be given, and find k such that $\left\|\varphi-\varphi_{k}\right\| \leq \frac{\varepsilon}{3}$ and N such that $\forall m, n>N$: $\left|\varphi_{k}\left(y_{n}\right)-\varphi_{k}\left(y_{m}\right)\right|<\frac{\varepsilon}{3}$. Recall that $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded, and hence $\left\|y_{n}\right\| \leq M$. Then

$$
\left|\varphi\left(y_{n}\right)-\varphi\left(y_{m}\right)\right|<\left|\varphi_{k}\left(y_{n}\right)-\varphi_{k}\left(y_{m}\right)\right|+\left|\varphi\left(y_{n}\right)-\varphi_{k}\left(y_{n}\right)\right|+\left|\varphi\left(y_{m}\right)-\varphi_{k}\left(y_{m}\right)\right|<\frac{\varepsilon}{3}+2 \frac{\varepsilon}{3} M
$$

Let $\varepsilon(\varphi):=\lim _{n \rightarrow \infty} \varphi\left(x_{n}\right)$. then (by Banach-Steinhaus theorem) $\varepsilon \in Y^{* *}$. By reflexivity $\varepsilon(\varphi)=\varphi(y)$, we claim $y_{n} \xrightarrow{\mathrm{w}} y$. We know that for all $\varphi \in Y^{*}$ it holds that $\varphi\left(y_{n}\right) \longrightarrow \varphi(y)$. So $\forall \varphi \in X^{*}: \varphi\left(y_{n}\right)=\left.\varphi\right|_{Y}\left(y_{n}\right)$ and hence $\forall \varphi \in X^{*}: \varphi\left(y_{n}\right) \rightarrow \varphi(y)$, which is equivalent to $y_{n} \xrightarrow{\mathrm{w}} y$.

Theorem 4.30. Suppose that $L \in \mathcal{L}(X, Y)$ is compact. Then $x_{n} \xrightarrow{\mathrm{w}} x$ implies $L x_{n} \longrightarrow L x$.
Proof. We know:

1. Since $x_{n} \xrightarrow{\mathrm{w}} x$, then $\left(x_{n}\right)_{n \in \mathbb{N}}$ is bounded.
2. Then $\left(L x_{n}\right)_{n \in \mathbb{N}}$ (as a set) is relatively compact, and also $L x_{n} \xrightarrow{\mathrm{w}} L x$.

Claim: Norm and weak convergence on compact sets conincide. Proof: Suppose that $L x_{n}$ does not converge to $L x$, then there exists ε and subsequence $\left(x_{n_{k}}\right)_{k \in \mathbb{N}}$ such that $\forall k \in \mathbb{N}:\left\|L x-L x_{n_{k}}\right\| \geq \varepsilon .\left(L x_{n_{k}}\right)_{k \in \mathbb{N}}$ has a subsequence $\left(L x_{n_{k}}^{(2)}\right)_{k \in \mathbb{N}}$ such that $L x_{n_{k}}^{(2)} \longrightarrow y$ and hence $L x_{n_{k}}^{(2)} \xrightarrow{\mathrm{w}} y$. On the other hand $\|y-L x\|>\varepsilon$, but $L x_{n_{k}}^{(2)} \xrightarrow{\mathrm{w}} L x$, contradition. This proves the claim. Illustration:

Figure 18: ...

Prop. 4.31 (characterization of weak convergence in compact spaces). Norm and weak convergence on compact sets conincide.

Proof. See above.
Remark 4.32 (historical remark). Hilbert called operators that map weakly convergent sequences to norm convergent seuqneces totally continuous. Then Riesz introduced compact operators.

4.4 Open Mapping Theorem and its Corollaries

- Question: Suppose that $L \in \mathcal{L}(X, Y)$ is a bijection; is then L^{-1} bounded?
- Recall bounded \Leftrightarrow continuous. Do all continuous bijections have continuous inverse?
- Example: $f:\left[0,2 \pi\left[\rightarrow S_{1}, t \mapsto(\cos t, \sin t)\right.\right.$. Illustration:
- f^{-1} is continuous, if for all open sets U in $X\left(f^{-1}\right)^{-1}[U]=f[U]$ is open in Y.

Definition 4.33 (open map). A map f is called open if for each U open also $f[U]$ is open.
Prop. 4.34 (characterization of open maps). A function is open iff ot maps all neighborhoods of x into neighborhoods of $f(x)$.

Prop. 4.35. A continuous bijection has continuous inverse of f is open.
Theorem 4.36. Suppose that X and Y are Banach spaces. Then every $L \in \mathcal{L}(X, Y)$ such that $L[X]=Y$ is open.

Repitition: Let X, Y topological spaces and $f: X \rightarrow Y$ a map.
f is open $\quad: \Leftrightarrow \quad$ image of open set is open
f is continuous $\quad: \Leftrightarrow$ preimage of open set is open
f is homeomorphism $: \Leftrightarrow f$ is continuous bijection with continuous inverse
A neighborhood $V \subseteq X$ of $x \in X$ is a set iff there exists $U \subseteq X$ open such that $x \in U$ and $U \subseteq V$.
Question: Under what conditions a continuous bijection has contiuous inverse.
Prop. 4.37. f is open iff it maps neighborhoods to neighborhoods.
Proof.

- " \Rightarrow ": Picture:

Figure 19: Proof of " f open $\Rightarrow f$ maps neighborhoods to neighborhoods".

- " \Leftarrow ": A set is open if it is a neighborhood of all its points. Now assume f maps neighborhoods to neighboorhoods, then for all V open and $x \in V$, it follows that $f[V]$ is neighborhood of $f(x)$, and hence $f[V]$ is open.

Theorem 4.38 (open mapping principle). Let X, Y be Banach spaces and $L \in \mathcal{L}(X, Y)$. Assume that L is surjective, i.e. $L[X]=Y$, then L is open.

Proof. Steps:

1. Observations: We need to check if L maps neighborhoods to neighborhoods. If V is a neighborhood of x then $-x+V$ is a neighborhood of 0 ,

$$
L[-x+V]=-L(x)+L[V]
$$

Each neighborhood V of 0 includes a ball $B_{r} \subseteq V$ for some $r>0$. We need to check that B_{r} is mapped into a neighborhood.
2. To show: There exists ball B_{r} for some r such that $B_{r} \subseteq L\left[B_{1}\right]$.

We have $X=\bigcup_{n \in \mathbb{N}} B_{n}$, and therefore $Y=L[X]=\bigcup_{n \in \mathbb{N}} L\left[B_{n}\right]$. By Baire category theorem there exists $n \in \mathbb{N}$ such that the interior of $\overline{L\left[B_{n}\right]}$ is non-empty, i.e. there exists $y \in Y$ and $\varepsilon>0$ such that $B_{\varepsilon}(y) \subseteq \overline{L\left[B_{n}\right]}$. By assumption there exists $x \in X$ such that $y=L(x)$, and hence $B_{\varepsilon}(L(x)) \subseteq \overline{L\left[B_{n}\right]}$. It follows that:

$$
\begin{gathered}
B_{\varepsilon}=-L(x)+B_{\varepsilon}(L(x)) \\
L(x)+B_{\varepsilon}=B_{\varepsilon}(L(x)) \subseteq \overline{L\left[B_{n}\right]} \\
B_{\varepsilon} \subseteq \overline{L\left[-x+B_{n}\right]} \subseteq \overline{L\left[B_{n+\|x\|}\right]} \\
\overline{L\left[B_{1}\right]}=\frac{1}{n+\|x\|} \overline{L\left[B_{n+\|x\|}\right]} \quad \therefore \quad B_{\bar{\varepsilon}} \frac{\varepsilon}{n+\|x\|} \subseteq \overline{L\left[B_{1}\right]}
\end{gathered}
$$

3. We aim to prove: L maps open sets to open sets.

We proved: there exists $d>0$ such that $B_{d} \subseteq \overline{L\left[B_{1}\right]}$.
We need to get of of closure. We are going to prove $B_{d} \subseteq L\left[B_{2}\right]$.
By approximation:

- There exists $x_{1} \in B_{1}$ such that $\left\|L\left(x_{1}\right)-L(x)\right\|<\frac{d}{2}$. Let me call $y_{n}=L\left(x_{1}\right)-L(x)$, then $y_{1} \in B_{d / 2} \subseteq$ $\overline{L\left[B_{1 / 2}\right]}$.
- There exists $x_{2} \in B_{1 / 2}$ such that $\left\|L\left(x_{2}\right)-y_{1}\right\|<\frac{d}{4}$. Again $y_{2}=L\left(x_{2}\right)-y_{1}$, then $y_{2} \in B_{d / 4} \subseteq \overline{L\left[B_{1 / 4}\right]}$.
- Continuing this process we find $x_{n} \in B_{1 / 2^{n-1}}$, i.e. $\left\|x_{n}\right\|<\frac{1}{2^{n-1}}$, such that $\left\|L(x)-L\left(x_{1}+\ldots+x_{n}\right)\right\|<\frac{d}{2^{n}}$.

Now I put $x=\sum_{n=1}^{\infty} x_{n}=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} x_{n}$; this limit exists because $\sum_{n=1}^{\infty}\left\|x_{n}\right\|=\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}=2$, and therefore $\|x\|<2$. Why $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty \Rightarrow \sum_{n=1}^{\infty} x_{n}$ exists? Because X is Banach. In fact

$$
X \text { Banach } \Leftrightarrow\left(\forall\left(x_{n}\right)_{n \in \mathbb{N}} \in X^{\mathbb{N}}: \sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty \Rightarrow \sum_{n=1}^{\infty} x_{n} \text { exists }\right) .
$$

For any $y \in B_{d}$ we found $x \in B_{2}$ such that $y=L(x)$, i.e. $B_{d} \subseteq L\left[B_{2}\right]$.
4. We proved $B_{d / 2} \subseteq L\left[B_{1}\right]$, therefore L is open.

Proof of this conclusion: Let V be a neigborhood of $x \in X$. Then there exists a ball $B_{\varepsilon}(x) \subseteq V$. Then $-x+V$ is a neighborhood of 0 and $B_{\varepsilon} \subseteq-x+V$. Then $L\left[B_{\varepsilon}\right] \subseteq L[-x+V]$, and therefore $B_{\varepsilon \cdot d / 2} \subseteq L\left[B_{\varepsilon}\right] \subseteq L[-x+V]$, hence $B_{\varepsilon \cdot d / 2}(L(x)) \subseteq L[V]$. This proves that $L[-x+V]$ is a neighborhood of 0 . This also proves that $L[V]$ is a neighborhood of $L(x)$, hence L is open.
5. Further remarks:

for any $\varepsilon>0$ there exists x_{ε} such that $\left\|y-L\left(x_{\varepsilon}\right)\right\|<\varepsilon$, $y=L x$

$$
x=\sum_{n=1}^{\infty} \ldots
$$

Figure 20: Illustration for the proof of the open mapping principle.

Theorem 4.39 (inverse mapping theorem). Let X, Y be Banach spaces and $L \in \mathcal{L}(X, Y)$ be a bijection. Then $L^{-1} \in$ $\mathcal{L}(Y, X)$.

Proof. If L is bijection then $L[X]=Y$ and hence L is open. Then open continuous bijection is homeomorphism.

Definition 4.40 (graph of a map).

Let X, Y be normed linear spaces and $L: X \rightarrow Y$ a map. Then the graph $\Gamma(L)$ of L is defined as $\Gamma(L)=\{(x, y) \in X \times Y \mid y=L(x)\} \subseteq X \times Y$.

Remark 4.41. Recall that $X \times Y$ can be equipped with norm $\|(x, y)\|=\|x\|+\|y\|$. Then $X \times Y$ is normed linear space and if X, Y is Banach, then so is $X \times Y$.

Theorem 4.42 (closed graph theorem). Let X, Y be Banach spaces and $L: X \rightarrow Y$ a linear map. Then the following is equivalent:
(1) L is bounded.
(2) $\Gamma(L)$ is closed.

Repitition: For $L: X \rightarrow Y$ graph of L is $\Gamma(L)=\{(x, y) \in X \times Y \mid y=L(x)\}$.

Theorem 4.42 (closed graph theorem). Let X, Y be Banach spaces and $L: X \rightarrow Y$ linear. Then the following is equivalent:
(i) L is bounded.
(ii) $\Gamma(L)$ is closed (as a subspace of $\left(X \times Y,\|(x, y)\|=\|x\|_{X}+\|y\|_{Y}\right)$).

Proof.

- "(i) $\Rightarrow(\mathrm{ii}) ":$ Let L be bounded and $\left(x_{n}, L\left(x_{n}\right)\right) \longrightarrow(x, y)$. We need to check $(x, y) \in \Gamma(L) \Leftrightarrow y=L(x)$. Indeed, because L is continuous, $x_{n} \longrightarrow x$ implies $L\left(x_{n}\right) \longrightarrow L(x)$, and hence $L(x)=y$.
- "(ii) $\Rightarrow(\mathrm{i}) ": X \times Y$ is a Banach space, and by assumption $\Gamma(L)$ is closed, therefore $\Gamma(L)$ is a Banach space.

Coordinate projections (functions):

$$
\begin{aligned}
& \pi_{X}: X \times Y \rightarrow X, \quad(x, y) \mapsto x \\
& \pi_{Y}: X \times Y \rightarrow Y, \quad(x, y) \mapsto y
\end{aligned}
$$

For $(x, L(x)) \in \Gamma(L)$ we have $\pi_{X}(x, L(x))=x$ and $\pi_{Y}(x, L(x))=y$ and

$$
\pi_{Y}\left(\pi_{X}^{-1}(x)\right)=L(x)
$$

where π_{X}^{-1} exists as operator $\pi_{X}^{-1}: X \rightarrow \Gamma(L)$, because the operator $\pi_{X}: \Gamma(L) \rightarrow X$ is a bijection. Then $\pi_{Y} \circ \pi_{X}^{-1}: X \rightarrow Y$.

Claim: π_{X}, π_{Y} are bounded maps and π_{X}^{-1} is a bounded map $X \rightarrow \Gamma(L)$. Proof: π_{Y} is bounded: $\left\|\pi_{Y}(x, y)\right\|=\|y\| \leq\|x\|+\|y\| \therefore\left\|\pi_{Y}\right\| \leq 1$.
π_{X}^{-1} bounded as map $X \rightarrow \Gamma(L): \pi_{X}: \Gamma(L) \rightarrow X$ is a bijection and $\Gamma(L), X$ are Banach spaces, therefore π_{X}^{-1} is bounded by the inverse map theorem.

Now consider map

$$
\pi_{Y} \circ \pi_{X}^{-1}: X \rightarrow \Gamma(L) \rightarrow Y,\left(\pi_{Y} \circ \pi_{X}^{-1}\right)(x)=L(x),
$$

then $\pi_{Y} \circ \pi_{X}^{-1}=L$, and hence L is bounded as composition of two bounded maps.

Remark 4.43. unbounded operators \neq not bounded operators

4.4.1 Application 1: Hellinger-Toeplitz theorem

\rightarrow see exercises.

4.4.2 Application 2: Projections on Banach spaces

Definition 4.44 (kernel, range). For a linear operator $L: X \rightarrow Y$:

$$
\begin{array}{lll}
\text { Kernel: } & \operatorname{ker}(P)=\{x \in X \mid L(x)=0\} & \subseteq X \\
\text { Image: } & \operatorname{im}(P)=\{y \in Y \mid \exists x \in X: y=L(x)\} \subseteq Y
\end{array}
$$

Definition 4.45 (projection). Let X be a linear space. A linear operator $P: X \rightarrow X$ is called projection if $P \circ P=P$.

Prop. 4.46. If P is a projection and $x \in X$, then there exists an unique decomposition $x=y+z$ such that $y \in \operatorname{im}(P)$ and $z \in \operatorname{ker}(P)$.

Proof. Existence:

$$
x=\underbrace{P(x)}_{\in \operatorname{im}(P)}+\underbrace{(1-P)(x)}_{\in \operatorname{ker}(P)}
$$

We need to check $(P(1-P))(x)=\left(P-P^{2}\right)(x)=(P-P)(x)=0$. Uniqueness: Suppose $x=y+z$ with $z \in \operatorname{ker}(P)$. Then $P(x)=P(y)+P(z)=P(y)=y$, where the latter inequality follows from $\forall y \in \operatorname{im}(P): P(y)=y$, because if $y \in \operatorname{im}(P)$ there exists $x \in X$ such that $y=P(x)$, and $P(y)=P^{2}(x)=P(x)=y$.

Example 4.47. $P_{\alpha}: \mathbb{R}^{2} \rightarrow \mathbb{R}, P_{\alpha}=\left(\begin{array}{cc}1 & \alpha \\ 0 & 0\end{array}\right), P_{\alpha}{ }^{2}=P_{\alpha}$.

$$
P_{\alpha}(0,1)=(\alpha, 0)
$$

Figure 21: Illustration of the projection $P_{\alpha}=[[1, \alpha],[0,0]]$.

Definition 4.48 (sum of subsets). Let X be a lineas space and Y, Z subsets of X. We define $Y+Z=\{x \in X \mid \exists y \in$ $Y, z \in Z: x=y+z\}$.

Definition 4.49 (direct sum of linear subspaces). Let X be a linear space and Y, Z subspaces of X. Then we write $X=Y \oplus Z$ provided $Y \cap Z=\{0\}$ and $Y+Z=X$. This is equivalent to the existence of a unique decomposition $x=y+z$ where $y \in Y$ and $z \in Z$.

Remark 4.50 (algebraic \leftrightarrow geometric). Given P we define $Y=\operatorname{im}(P)$ and $Z=\operatorname{ker}(P)$. Given $X=Y \oplus Z$, we can define $P: X \rightarrow X$ given by $P(x)=y$ given $x=y+z$. Claim: P is projection.

Question: If X is normed linear space, would the decomposition $X=Y \oplus Z$ contiuous? $(x=y+z)$
Answer: This is equivalent to P being bounded.
Proof: $y=P(x) ; x=P(x)+(1-P)(x) ; x_{n} \rightarrow x \Rightarrow y_{n} \rightarrow y$.
Lemma 4.51. Let X be a normed linear space and L a bounded map on X. Then $\operatorname{ker}(L)$ is closed linear subspace.
Proof. Let $\left(x_{n}\right)_{n \in \mathbb{N}} \in(\operatorname{ker}(L))^{\mathbb{N}}$ be such that $x_{n} \xrightarrow{n \rightarrow \infty} x$. By continuity of L we have $0=L\left(x_{n}\right) \xrightarrow{n \rightarrow \infty} L(x)$, therefore $L(x)=0$, i.e. $x \in \operatorname{ker}(L)$.

Theorem 4.52. Let X be a Banach space and Y, Z two subspaces such that $X=Y \oplus Z$. Then the following is equivalent:
(i) Associated projection P is bounded.
(ii) Y, Z are closed.

Proof.

- "(i) \Rightarrow (ii)": Put $Y=\operatorname{im}(P)$ and $Z=\operatorname{ker}(P)$. Then Z is closed by the lemma above, and Y is closed because $Y=\operatorname{ker}(1-P)$.
Let's proof $Y=\operatorname{ker}(1-P):$ " \subseteq ": If $y \in \operatorname{im}(P)$ then $y \in \operatorname{ker}(1-P)$, because $y=P(x)$ implies $(1-P)(y)=$ $(1-P)(P(x))=(P-P)(x)=0$. " \supseteq ": Let $y \in \operatorname{ker}(1-P)$, then $(1-P)(y)=0$, hence $y=P(y)$.
- "(ii) \Rightarrow (i)": Suppose that Y, Z are closed. We want to show that $P(x)=y(x=y+z)$ is bounded.

$$
\Gamma(P)=\{(x, y) \in X \times Y \mid x=y+z\}
$$

$1^{\text {st }}$ version of the proof:
$\Gamma(P)$ closed $\Leftrightarrow x_{n}=y_{n}+z_{n}$ and $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ then $y \in Y$. In particular $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$, and therefore $z_{n} \rightarrow z$. We conclude $x=y+z$.
$2^{\text {nd }}$ version of the proof:
$\Gamma(P)$ closed $\Leftrightarrow x_{n}=y_{n}+z_{n}$. If $\left(x_{n}, y_{n}\right) \rightarrow(x, y)$ then $(x, y) \in \Gamma(P)$. From $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ it follows that $z_{n} \rightarrow z$ such that $x=y+z$. Since Y and Z are closed, $y_{n} \rightarrow y$ implies $y \in Y$ and $z_{n} \rightarrow z$ implies $z \in Z$, together this implies $(x, y) \in \Gamma(P)$. By closed graph theorem, this implies that P is a bounded operator.

Repitition: Banach space $X=Y \oplus Z \quad \leftrightarrow \quad P$ projection with $Y=\operatorname{ker}(P), Z=\operatorname{im}(P)$
Claim: P bounded $\Leftrightarrow Y, Z$ closed

Example 4.53.

(1) Consider $c=\left\{\left(x_{n}\right)_{n \in \mathbb{N}}\right.$ sequence $\mid \lim _{n \rightarrow \infty} x_{n}$ exists $\}$, in particular $c_{0} \subseteq c$.

Let Z be a subspace generated by $z=(1,1,1, \ldots)$. Then $c=c_{0} \oplus Z$.

$$
\begin{gathered}
\forall x \in c: x=\underbrace{x_{0}}_{\in c_{0}}+\underbrace{\alpha}_{\in \mathbb{R}} \cdot z \\
P x=z(\underbrace{\lim _{n \rightarrow \infty} x_{n}}_{=\alpha})
\end{gathered}
$$

(2) Let (X, Σ, μ) probability space $\mu(X)=1$. Random variable is measureable function $f: X \rightarrow \mathbb{R}$. For $f \in L^{1}(X)$ the expectation value $\mathbb{E}[F]$ of f is

$$
\mathbb{E}[f]=\int_{X} f \mathrm{~d} \mu
$$

Let $\mathcal{H}=\left\{f\right.$ random variable $\left.\mid \mathbb{E}\left[f^{2}\right]<\infty\right\}$, then $(\mathcal{H},\langle\cdot, \cdot\rangle)$ is a Hilbert space, where $\langle f, g\rangle=$ $\mathbb{E}[f \cdot g]$. Consider a random variable g and subspace \mathcal{G} generated by g,

$$
\mathcal{G}=\{h \in \mathcal{H} \mid \exists \text { function } F: \mathbb{R} \rightarrow \mathbb{R}: h=F \circ g \text { almost surely }\}
$$

Now orthogonal projection $P_{g}: \mathcal{H} \rightarrow \mathcal{H}$ with $\operatorname{im}\left(P_{g}\right)=\mathcal{G}$, i.e. the projection corresponding to $\mathcal{H}=\mathcal{G} \oplus \mathcal{G}^{\perp}$. And $P_{g}(f)$ is conditional expectation. Claim:

$$
\begin{equation*}
\forall h \in \mathcal{G}: \mathbb{E}[h \cdot \mathbb{E}[f \mid g]]=\mathbb{E}[h \cdot f] \tag{*}
\end{equation*}
$$

Proof:

$$
\mathbb{E}[h \cdot \mathbb{E}[f \mid g]]=\left\langle h, P_{g}(f)\right\rangle=\left\langle h, P_{g}(f)+\left(1-P_{g}\right)(f)\right\rangle=\langle h, f\rangle=\mathbb{E}[h \cdot f]
$$

Comparison to standard definition:
Def.: Conditional expectation $\mathbb{E}[f \mid g]$ is a unique random variable measureable w.r.t. sigma algebra generated by g such that $(*)$ holds.
Claim: P_{g} is uniquely defined by requirements $(*)$ and $\forall f: P_{g}(f) \in \mathcal{G}$.
Geometric interpretation of random variables:

$$
\begin{gathered}
\left(1-P_{g}\right)(f) \in \mathcal{G}^{\perp} \\
\text { is an element } \\
\operatorname{dist}(\mathcal{G}, f)=\left\|P_{g}(f)-f\right\| .
\end{gathered}
$$

Figure 22: Geometric interpretation of random variables
(3) Example of example (2):
T : Temperature of day
A: Amount of icecream sold in a shop

T in ${ }^{\circ} \mathrm{C}$	34	24
A in kg	20	10

$\mathbb{E}[T]: \quad$ Average temperature of a day in data
$\mathbb{E}[A]$: Average amount of icecream sold in data
$\mathbb{E}[A \mid T]$: Average amount sold on days with temperature T

Spectral Theory

5.1 The Spectrum of an Operator

Let X complex Banach space, we consider space $\mathcal{L}(X)$.
Def./Lemma 5.1 (kernel, image, invertibility). For $L \in \mathcal{L}(X)$ we have:

kernel of $L:$	$\operatorname{ker}(L)$	$:=\{x \in X \mid L(x)=0\} \subseteq X$
image of $L:$	$\operatorname{im}(L)$	$:=\{x \in X \mid \exists y \in X: x=L(y)\} \subseteq X$
	invertability of $L:$	L invertible

Definition 5.2 (spectrum). For $L \in \mathcal{L}(X)$ we have:
resolvent of L :
$\varrho(L):=\{\lambda \in \mathbb{C} \mid L-\lambda$ id invertible $\} \subseteq \mathbb{C}$
spectrum of $L: \quad \sigma(L):=\{\lambda \in \mathbb{C} \mid \operatorname{ker}(L-\lambda i d) \neq\{0\} \vee \operatorname{im}(L-\lambda i d) \neq X\} \subseteq \mathbb{C}$
point spectrum of $L: \quad \sigma_{\mathrm{pt}}(L):=\{\lambda \in \sigma(L) \mid \operatorname{ker}(L-\lambda \mathrm{id}) \neq\{0\}\}=\{\lambda \in \sigma(L) \mid \exists x \neq 0: L(x)=\lambda \cdot x\} \subseteq \mathbb{C}$

Theorem 5.3 (basic properties of the spectrum).
(i) $\sigma(L) \cap \varrho(L)=\emptyset$
(ii) $\sigma(L) \cup \varrho(L)=\mathbb{C}$
(iii) $\sigma(L)$ is a compact subset of \mathbb{C}

Proof.
(i) \checkmark
(ii) By inverse map theorem for each λ either $\operatorname{ker}(L-\lambda i d) \neq\{0\}$ or $\operatorname{im}(L-\lambda i d) \neq X$ or $L-\lambda i d$ invertible.
(iii) Little bit work.

Claim: $\varrho(L)$ is open subset of \mathbb{C} (this implies $\sigma(L)$ is closed).
Proof: Let $\lambda \in \varrho(L)$, then $(L-\lambda i d)^{-1}$ exists by the lemma below. For each $\tilde{\lambda}$

$$
\|(L-\lambda \mathrm{id}-(L-\tilde{\lambda} \mathrm{id}))\|=|\lambda-\tilde{\lambda}|<\frac{1}{\left\|(L-\lambda \mathrm{id})^{-1}\right\|}
$$

therefore $L-\tilde{\lambda}$ id is invertible, in particular $\tilde{\lambda} \in \varrho(L)$, and hence $\varrho(L)$ is open.
We prove (iii) by proving that $\Gamma(L)$ is bounded.
Lemma 5.4 (invertiblity is perserved under small perturburations). Let $L \in \mathcal{L}(X)$ be invertible and $S \in \mathcal{L}(X)$ such that $\|S-L\|<\left\|L^{-1}\right\|^{-1}$, then S is invertible.

Proof. We calculate:

$$
S=S-L+L=L \circ\left(L^{-1} \circ(S-L)+1\right)
$$

We are going to use the geometric series:

$$
\forall x \in \mathbb{C},|x|<1: \frac{1}{1+x}=\sum_{n=0}^{\infty}(-1)^{n} x^{n} \quad \text { resp. } \quad \forall x \in \mathbb{C},|x|<1: \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Observations:

1. $\sum_{n=0}^{\infty} x^{n}$ is absolutely converging $\left(\left\|x^{n}\right\| \leq\|x\|^{n}\right)$, therefore $\lim _{N \rightarrow \infty} \sum_{n=0}^{N} x^{n}$ exists.
2. $(1-x) \sum_{n=0}^{N} x^{n}=(1-x) \cdot\left(1+x+x^{2}+\ldots+x^{N}\right)=1-x^{N+1} \xrightarrow{N \rightarrow \infty} 1$.

To finish the proof observe that

$$
\left\|L^{-1} \circ(S-L)\right\| \leq\left\|L^{-1}\right\| \cdot\|S-L\|<1
$$

therefore $L^{-1} \circ(S-L)+1$ is invertible and

$$
S^{-1}=\left(L^{-1} \circ(S-L)+1\right)^{-1} \circ L^{-1}
$$

Prop. 5.5. If $|\lambda|>\|L\|$, then $L-\lambda$ id is invertible, hence $\sigma(L) \subseteq B_{\|L\|}$.
Proof. $L-\lambda \mathrm{id}=\lambda\left(\frac{L}{\lambda}-\mathrm{id}\right)$, and since $\left\|\frac{L}{\lambda}\right\|<1$, then

$$
(L-\lambda \mathrm{id})^{-1} \stackrel{\substack{\text { Lemma } \\ \text { above }}}{=}-\frac{1}{\lambda} \sum_{n=0}^{\infty}\left(\frac{L}{\lambda}\right)^{n}=-\sum_{n=0}^{\infty} \lambda^{-n-1} L^{n} .
$$

Repitition: X complex Banach space, $L \in \mathcal{L}(X)$.

- Spectrum $\sigma(L)=\{\lambda \in \mathbb{C} \mid \operatorname{ker}(L-\lambda) \neq\{0\} \vee \operatorname{im}(L-\lambda) \neq\{0\}\}$
- Resolvent $\varrho(L)=\{\lambda \in \mathbb{C} \mid L-\lambda$ invertible $\}$
- Claim: $\sigma(L)$ is a compact subset of $\{\lambda \in \mathbb{C}||\lambda| \leq\|L\|\}$

5.2 Applications of Spectral Theory

5.2.1 Overview

Overview:
(A) functional calculus
(B) diagonalization
(C) transformation to canonical form

5.2.2 (A) Functional Calculus

Given function $f: \mathbb{C} \rightarrow \mathbb{C}$, the task is to complete $f(L)$.
Example: For $f(t)=t^{2}$ we have $f(L)=L^{2}$.

5.2.3 (B) Diagonalization

Little bit of linear algebra. Consider $X=\mathbb{C}^{d}$ (finite-dimensional) and $L \in \mathcal{L}(X)$.
Definition 5.6 (eigenvalues and eigenvectors in finite dimensions). Let $\lambda \in \mathbb{C}$ and $x_{\lambda} \in X \backslash\{0\}$. If x_{λ} solves the equation $L\left(x_{\lambda}\right)=\lambda \cdot x_{\lambda}$, then x_{λ} eigenvector and λ eigenvalue.

Remark 5.7. If $\operatorname{ker}(L-\lambda) \neq 0$, then $\lambda \in \sigma_{\mathrm{pt}}(L)$, i.e. λ belongs to the point spectrum of L.
Prop. 5.8 (Fredholm alternative). In finite dimensions $\operatorname{ker}(L) \neq 0 \Leftrightarrow \operatorname{im}(L) \neq X$.
Proof. $L(x)=y$ is solveable iff $\operatorname{det}(L) \neq 0$.
Corollary 5.9. $\sigma(L)=$ set of all eigenvalues of L

5.2.4 (A) Functional Calculus

Theorem 5.10. Assume that L has d linearly independent eigenvectors $\left(x_{n}\right)_{n=1, \ldots, d}$ associated to eigenvalues $\left(\lambda_{n}\right)_{n=1, \ldots, d}$. Then there exists invertible matrix V such that

$$
\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{d}
\end{array}\right)=V L V^{-1}
$$

If $L=L^{*}$, then $V^{-1}=V^{*}$ (unitary). In that case:

$$
f\left(\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{d}
\end{array}\right)\right)=\left(\begin{array}{ccc}
f\left(\lambda_{1}\right) & & 0 \\
& \ddots & \\
0 & & f\left(\lambda_{d}\right)
\end{array}\right) \quad \text { and } \quad f\left(V L V^{-1}\right)=V f(L) V^{-1}
$$

Prop. 5.11. f analytic

$$
f(L)=\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \frac{f(z)}{z-L} \mathrm{~d} z, \quad \gamma \text { such that } \sigma(L) \subseteq \operatorname{int}(\gamma)
$$

Note: $\frac{1}{z-L}=(z \operatorname{id}-L)^{-1}$.
Proof.
For diagonal:

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} f(z) \cdot\left(\begin{array}{ccc}
\frac{1}{z-\lambda_{1}} & & 0 \\
& \ddots & \\
0 & & \frac{1}{z-\lambda_{d}}
\end{array}\right) \mathrm{d} z
$$

By Cauchy's formula:

$$
\frac{1}{2 \pi \mathrm{i}} \oint_{\gamma} \frac{f(z)}{z-\lambda_{1}}=f\left(\lambda_{1}\right)
$$

5.2.5 (C) Transformation to Canonical Form

A quadratic form in $\mathbb{R}^{2}: x=\left(x_{1}, x_{2}\right), Q(\vec{x})=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}$, then equation $Q(x)=1$.
Representation of Q as matrix:

$$
Q(x)=\langle x, L x\rangle, \quad L=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Diagonalization:

$$
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \cdot\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{ll}
3 & 0 \\
0 & 1
\end{array}\right)
$$

Illustration:

$$
\begin{gathered}
\frac{d_{1}}{d_{2}}=\frac{1}{3} \\
\text { level set for } \\
\frac{x^{2}}{3}+y^{2}=1
\end{gathered}
$$

Figure 23: The level sets of quadratic forms on \mathbb{R}^{2} are ellipses. Diagonalization with unitary matrices align these ellipses with the x - and y-axis

Infinite quadratic form (Hilbert 1906):

$$
Q(x)=x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{4}+\ldots
$$

5.2.6 Overview

Overview of infinite-dimensional functional case:
(A) - Riesz holomorphic functional calculus

- Functional calculus for $L=L^{*}$
(B) - Diagonalization of maps $L=L^{*}$
- Spectral theory of compact operators
(C) - Only for hermitian operators

These are the topics of functional analysis II.

5.2.7 General Theory

Definition 5.12 (dual operator). Recall: X, X^{*}. For $L \in \mathcal{L}(X)$ define the dual $L^{\prime} \in \mathcal{L}\left(X^{*}\right)$ by

$$
\left(L^{\prime}(\varphi)\right)(x)=\varphi(L(x)), \varphi \in X^{*}, x \in X
$$

Definition 5.13 (annihilator). Let M be subspace of X and N subspace of X^{*}.

$$
\begin{array}{ll}
\text { annihilator of } M \subseteq X: & M^{\perp}:=\left\{\varphi \in X^{*} \mid \forall x \in M: \varphi(x)=0 \text { i.e. }\left.\varphi\right|_{M}=0\right\} \subseteq X^{*} \\
\text { annihilator of } N \subseteq X^{*}: & \perp N:=\left\{x \in X \mid \forall \varphi \in N: \varphi(x)=0 \text { i.e. }\left.\varphi\right|^{N}=0\right\} \quad \subseteq
\end{array}
$$

Lemma 5.14. $\perp\left(M^{\perp}\right)=\bar{M}$.

Lemma 5.15. Let $L \in \mathcal{L}(X)$ and denote the dual of L by $L^{\prime} \in \mathcal{L}\left(X^{*}\right)$. Then:
(i) $(\operatorname{im}(L))^{\perp}=\operatorname{ker}\left(L^{\prime}\right)$
(ii) $\operatorname{ker}(L)={ }_{\perp}\left(\operatorname{im}\left(L^{\prime}\right)\right)$
(iii) $\overline{\operatorname{im}(L)}=\perp\left(\operatorname{ker}\left(L^{\prime}\right)\right)$

Proof.
(i) Let $\varphi \in(\operatorname{im}(L))^{\perp}$, this means $\forall x \in X: \varphi(L(x))=0$. Because $0=\varphi(L(x))=\left(L^{\prime}(\varphi)\right)(x)$ it follows that $L^{\prime}(\varphi)=0$, i.e. $\varphi \in \operatorname{ker}\left(L^{\prime}\right.$. Let $\varphi \in \operatorname{ker}\left(L^{\prime}\right)$, then $0=\left(L^{\prime}(\varphi)\right)(x)=\varphi(L(x))$, and therefore $\forall y \in \operatorname{im}(L): \varphi(y)=0$, i.e. $\varphi \in(\operatorname{im}(L))^{\perp}$.
(ii) Do it yourself.
(iii) Taking (i) and applying $\perp(\cdot)$ implies (iii).

5.2.8 (B) Diagonalization

Relevance of L^{\prime} for diagonalization: We consider $d \times d$ matrix L.
Prop. 5.16. Every eigenvalue of L is also an eigenvalue of L^{\prime}, i.e. $\forall \lambda \in \mathbb{C}: \lambda \in \sigma(L) \Rightarrow \lambda \in \sigma\left(L^{\prime}\right)$.
Proof. Let λ be an eigenvalue of L, then

$$
\operatorname{ker}(L-\lambda) \neq 0 \quad \therefore \quad \operatorname{im}(L-\lambda) \neq X \quad \therefore \quad \operatorname{ker}\left(L^{\prime}-\lambda\right) \neq 0
$$

hence λ is an eigenvalue of L^{\prime}.
Prop. 5.17. Let λ be an eigenvalue associated to x_{λ}. Let further $\tilde{\lambda}$ be an eigenvalue $x_{\tilde{\lambda}}$. If $\lambda \neq \tilde{\lambda}$, then $x_{\tilde{\lambda}} \in$ $\operatorname{im}(L-\lambda)$.

Proof. If $\lambda \in \sigma(L)$, then $\lambda \in \sigma\left(L^{\prime}\right)$, hence $\forall \varphi_{\lambda} \in X^{*}: L^{\prime}\left(\varphi_{\lambda}\right)=\lambda \cdot \varphi_{\lambda}$. By (iii), for any $x \in \operatorname{im}(L-\lambda)$ we have $\varphi_{\lambda}(x)=0$.

$$
(L-\lambda) \frac{1}{\tilde{\lambda}-\lambda} x_{\tilde{\lambda}}=\frac{1}{\tilde{\lambda}-\lambda}(\tilde{\lambda}-\lambda) x_{\tilde{\lambda}} x_{\tilde{\lambda}}=x_{\tilde{\lambda}}
$$

By $\varphi_{\lambda}(x)=0$ it follows that $\forall \tilde{\lambda} \neq \lambda: \varphi_{\lambda}\left(x_{\tilde{\lambda}}\right)=0$.
Theorem 5.18. Suppose again that L has d distinct eigenvalues with eigenvectors x_{λ}, then L^{\prime} has the same eigenvalues to which we can choose φ_{λ} with $L^{\prime}\left(\varphi_{\lambda}\right)=\lambda \cdot \varphi_{\lambda}$ such that

$$
L(x)=\sum_{\lambda \in \sigma(L)=\text { iright }}^{\text {eigen- }} \begin{aligned}
& \text { value }
\end{aligned} \underbrace{\lambda}_{\substack{=: 1 e f t \\
\text { eigen- } \\
\text { value }}} \cdot x_{\lambda} \cdot \underbrace{\varphi_{\lambda}(x)}_{\lambda} .
$$

Why this is diagonalization? It holds that $\varphi_{\lambda}\left(x_{\lambda^{\prime}}\right)=\delta_{\lambda, \lambda^{\prime}}$. If $x=\sum_{\lambda \in \sigma(L)} c_{\lambda} x_{\lambda}$, then

$$
L(x)=\sum_{\lambda \in \sigma(L)} \lambda x_{\lambda} \varphi_{\lambda}(x)=\sum_{\lambda \in \sigma(L)} \lambda x_{\lambda} c_{\lambda},
$$

where $c_{\lambda} \in \mathbb{C}$.

Proof. We know that there exist $\hat{\varphi}_{\lambda}$ with $\hat{\varphi}_{\lambda}\left(x_{\tilde{\varphi}}\right)$ if $\lambda \neq \tilde{\lambda}$. Since $\hat{\varphi}_{\lambda}$ is nonzero, then we can find $\varphi_{\lambda}=\#{ }_{\lambda} \hat{\varphi}_{\lambda}$ such that $\varphi_{\lambda}\left(x_{\lambda}\right)=1$ where $\#_{\lambda}=\frac{1}{\hat{\varphi}_{\lambda}\left(x_{\lambda}\right)}$. Therefore we have sets $\left\{\varphi_{\lambda}\right\}_{\lambda \in \sigma(L)}$ (basis of X^{*}) and $\left\{x_{\lambda}\right\}_{\lambda \in \sigma(L)}$ (basis of X). $\varphi_{\lambda}\left(x_{\tilde{\lambda}}\right)=\delta_{\lambda, \tilde{\lambda}}$. I need to check $L\left(x_{\tilde{\lambda}}\right)=\sum_{\lambda \in \sigma(L)} \lambda x_{\lambda} \varphi_{\lambda}\left(x_{\tilde{\lambda}}\right)=\tilde{\lambda} x_{\tilde{\lambda}}$.

5.3 Spectral Theory of Compact Operators

5.3.1 Introduction

Consider a Hilbert space $L^{2}(X, \mu)=: \mathcal{H}$. Then for $f \in \mathcal{H}$

$$
\|f\|_{2}=\int_{X}|f(x)|^{2} \mathrm{~d} \mu(x)<\infty
$$

Given $\phi \in L^{\infty}(X, \mu)$, then we define $L_{\phi} \in \mathcal{L}(\mathcal{H})$ by

$$
\left(L_{\phi} f\right)(x)=\phi(x) \cdot f(x) .
$$

This map has very nice properites:
(a) L_{ϕ} is bounded:

$$
\left\|L_{\phi} f\right\|_{2}^{2}=\int_{X}|\phi(x) \cdot f(x)|^{2} \mathrm{~d} \mu(x) \leq\|\phi\|_{\infty}^{2} \cdot\|f\|_{2}^{2} .
$$

(b) The spectrum $\sigma\left(L_{\phi}\right)$ is the essential image of ϕ, i.e.

$$
\lambda \in \sigma\left(L_{\phi}\right) \quad \Leftrightarrow \quad \forall \varepsilon>0: \mu(\{x \in X| | \phi(x)-\lambda \mid>\varepsilon\})>0 .
$$

Why? $z \in \varrho\left(L_{\phi}\right)$ iff $\left(L_{\phi}-z \mathrm{id}\right)^{-1}$ exists. If $\left(L_{\phi}-z \mathrm{id}\right)^{-1}$, then $L_{(\phi-z)^{-1}}\left(L_{\phi}-z \operatorname{id}\right)(f)=(\phi-z)^{-1}(\phi-z) f=f$, and $z \in \varrho\left(L_{\phi}\right)$ iff $\frac{1}{\phi-z} \in L^{\infty}(X, \mu)$.
(c) λ is in the point specturm $\sigma_{\mathrm{pt}}\left(L_{\phi}\right)$ if $\mu(\{x \in X \mid \phi(x)=\lambda\})>0$:

$$
\begin{aligned}
\lambda \in \sigma_{\mathrm{pt}}\left(L_{\phi}\right) & \Leftrightarrow \exists f_{\lambda} \in L^{2}(X, \mu) \backslash\{0\}: \lambda \cdot f_{\lambda}(x)=\left(\lambda \cdot f_{\lambda}\right)(x)=\left(L_{\phi} f_{\lambda}\right)(x)=\phi(x) \cdot f_{\lambda}(x) \\
& \Rightarrow \exists f_{\lambda} \in L^{2}(X, \mu) \backslash\{0\}: f_{\lambda} \text { is supported on }\{x \in X \mid \phi(x)=\lambda\}
\end{aligned}
$$

Example: $X=\mathbb{R}, \mu=\lambda$.
Consider $\phi(x)=\max \{-a, \min \{x,+a\}\}$.
Then $\sigma\left(L_{\phi}\right)=[-a,+a]$ and $\sigma_{\mathrm{pt}}\left(L_{\phi}\right)=\{-a,+a\}$.

(d) If $\phi=\bar{\phi}$, then $L_{\phi}=L_{\phi}{ }^{*}$, i.e. L_{ϕ} is hermitian:

$$
\begin{aligned}
\left\langle f, L_{\phi} g\right\rangle & =\int_{X} \bar{f} \cdot L_{\phi} g \mathrm{~d} \mu=\int_{X} \overline{f(x)} \cdot \phi(x) \cdot g(x) \mathrm{d} \mu(x) \\
& =\int_{X} \overline{\phi(x) \cdot f(x)} \cdot g(x) \mathrm{d} \mu(x)=\int_{X} \overline{L_{\phi} f} \cdot g \mathrm{~d} \mu=\left\langle L_{\phi} f, g\right\rangle=\left\langle f, L_{\phi}^{*} g\right\rangle
\end{aligned}
$$

(e) Given $F: \mathbb{C} \rightarrow \mathbb{C}$ bounded and continuous, then

$$
\left(F\left(L_{\phi}\right) f\right)(x):=F(\phi(x)) f(x) \quad \Leftrightarrow \quad F\left(L_{\phi}\right)=L_{F(\phi)}
$$

Check for $F=x^{n}: L_{\phi}^{n} f=L_{\phi} \cdots L_{\phi} f=\phi^{n} f=L_{\phi^{n}} f$.
Theorem 5.19 (spectral theorem for hermitian operators). Let \mathcal{H} be a Hilbert space and $H \in \mathcal{L}(\mathcal{H})$ with $H=H^{*}$, i.e. H hermitian. Then there exists measure space (X, Σ, μ) and $\phi \in L^{\infty}(X)$ and a unitary map $U: \mathcal{H} \rightarrow L^{2}(X, \Sigma, \mu)$ such that

$$
H=U^{*} \circ L_{\phi} \circ U
$$

Why do we want to compute functions of operators?

Example 5.20 (linear ordinary differential equation). Given ODE $\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=L(x(t))$ where $x(t) \in X$ and $L \in \mathcal{L}(X)$. The solution of this equation with initial condition $x(0)$ is

$$
x(t)=\exp (L t) \cdot x(0)
$$

because

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=L(\exp (L t) \cdot x(0)), \quad \exp (L t)=\sum_{n=0}^{\infty} \frac{L^{n} t^{n}}{n!}
$$

Example 5.21 (discrete time). Let $k \in C\left([0,1]^{2}\right)$ and consider map

$$
K: C([0,1]) \rightarrow C([0,1]),(K f)(x):=\int_{0}^{1} k(x, y) \cdot f(y) \mathrm{d} y \quad \text { (Fredholm operator). }
$$

Assume that $\forall x: \int_{0}^{1} k(x, y) \mathrm{d} y=1$ and that $\forall x, y: k(x, y) \geq 0$. If $p(x)$ is probability density on $[0,1]$, then

$$
\int_{0}^{1} k(x, y) p(y) \mathrm{d} y
$$

is a density (stochastic map). When we apply K again and again on f, then we get a Markov stochastic process in discrete time,

$$
p_{n+1}=K p_{n}
$$

Solution is $p_{n}=K^{n} p_{0}$. What happens if $n \rightarrow \infty$?

Prop. 5.22 (a criterion for quasi-nilpotence). If $\sigma(K)$ is strictly bounded in B_{1},

$$
\forall \lambda \in \mathbb{C}: \lambda \in \sigma(K) \Rightarrow|\lambda|<1
$$

then

$$
K^{n} \xrightarrow{n \rightarrow \infty} 0 .
$$

Proof. This follows from Gelfand formula.

5.3.2 Spectral Theory of Compact Operators

Example 5.23 (sounds from instruments). Any sound from instruments can be described with that. For example

$$
\Delta u_{\lambda}=\lambda u_{\lambda}, \quad \Delta u(x, y)=\frac{\partial^{2} u}{\partial x^{2}}(x, y)+\frac{\partial^{2} u}{\partial y^{2}}(x, y)
$$

for $u \in L^{2}(\Omega)$, where $\Omega \subseteq \mathbb{R}^{2}$ is the shape of the drum. However, $L: u \mapsto \Delta u$ is not bounded (not everywhere defined), in particular non-compact operator. Luckily, $(L-z \mathrm{id})^{-1}$ is compact provided $z \in \varrho(L)$. A map R_{z} that maps g to a solution of $\Delta z-z u=g$ is compact for $z \notin \mathbb{R}$.

Definition 5.24 (bounded from below). A map $L: X \rightarrow Y$ between Banach spaces X, Y is called bounded from below if

$$
\exists C>0 \forall x \in X:\|L x\| \geq C^{-1}\|x\| .
$$

Lemma 5.25 (image of bounded-from-below operator is closed). If $L \in \mathcal{L}(X, Y)$ (between Banach spaces X, Y) is bounded from below, then $\operatorname{im}(L)$ is closed.

Proof. Let $\left(y_{n}\right)_{n \in \mathbb{N}} \in(\operatorname{im}(L))^{\mathbb{N}}$ such that $y_{n} \xrightarrow{n \rightarrow \infty} y$. To show $y \in \operatorname{im}(L)$. Because $y_{n} \in \operatorname{im}(L)$ we have $\exists x_{n} \in X$: $y_{n}=L x_{n}$, and

$$
\left\|x_{n}-x_{m}\right\| \leq C\left\|y_{n}-y_{m}\right\| \longrightarrow 0
$$

i.e. $\left(x_{n}\right)_{n \in \mathbb{N}}$ is cauchy, hence $x_{n} \xrightarrow{n \rightarrow \infty} x$. It follows that $L x_{n} \xrightarrow{n \rightarrow \infty} L x$ and thus $y \in \operatorname{im}(L)$.

Lemma 5.26 (image of disturbed bounded-from-below compact operator is closed). Let K be a compact operator on a Banach space X and $\lambda \neq 0$. Then $\operatorname{im}(L-\lambda i d)$ is closed.

Proof. Generally, if $f \in \operatorname{ker}(L-\lambda i d)$ with $\|f\| \neq 0$, then $\|(K-\lambda i d) f\|=0$. So $K-\lambda i d$ cannot be bounded from below.

So we need a side step: Decompose $X=\operatorname{ker}(K-\lambda i d) \oplus Y$, where $\operatorname{ker}(K-\lambda i d)$ is closed. But $\operatorname{ker}(K-\lambda i d)$ being closed subspace is not enough for X to be decomposable. We further need:
Claim: $\operatorname{ker}(K-\lambda i d)$ is finite-dimensional.
Proof of claim: $\left.K\right|_{\operatorname{ker}(K-\lambda i d)}=\lambda i d$. If $\operatorname{ker}(K-\lambda i d)$ is infinite-dimensional, then id is not compact, contradicition.
Step 2:
Claim: $(K-\lambda i d)[Y]=\operatorname{im}(K-\lambda i d)$.
Proof of claim: For each $x \in X$ we have $x=z+y$ where $z \in \operatorname{ker}(K-\lambda i d)$, and therefore $(K-\lambda i d) x=(K-\lambda i d) y$ on Y.
($K-\lambda i d)$ is bounded from below.

5.3.3 Fredholm alternative

Theorem 5.27 (Fredholm alternative). Let K be a compact map on a Banach space X and $\lambda \neq 0$. Then

$$
\operatorname{ker}(K-\lambda \mathrm{id})=0 \Leftrightarrow \operatorname{im}(K-\lambda \mathrm{id})=X
$$

Remark 5.28 (equivalent formulation of the Fredholm alternative). Equation for x with y given: $K x-\lambda x=y$. Either it has unique solution for all y, or it has a nontrivial solution with $y=0$.

Example 5.29 (nilpotence and $\operatorname{ker}(L)+\operatorname{im}(L)=X$ in finite dimensions). Examples:

$$
\begin{array}{ccccc}
\text { Matrix } & \text { im } & \text { ker } & \operatorname{dim} \text { ker }+\operatorname{dim} \text { im } & \text { ker } \oplus \text { im } \\
L_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) & X & 0 & 2+0=2 & X \\
L_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & x \text {-line } & y \text {-line } & 1+1=2 & X \\
L_{3}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) & 0 & X & 0+2=2 & X \\
L_{4}=\left(\begin{array}{lll}
0 & 1 \\
0 & 0
\end{array}\right) & x \text {-line } & x \text {-line } & 1+1=2 & x \text {-line } \\
L_{2}^{(\alpha)} & =\left(\begin{array}{lll}
1 & \alpha \\
0 & 0
\end{array}\right) & & &
\end{array}
$$

Table 1: Images and kernels of some linear maps in finite dimensions.
The obstruction for $\operatorname{ker} L+\operatorname{im} L \neq X$ is nilpotence.

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)^{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Example in \mathbb{R}^{3} :

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)^{3}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Example 5.30 (quasi-nilpotence). Right shift:

$$
R: \ell^{2} \rightarrow \ell^{2} \text { defined by }(R x)_{n}=x_{n-1},(R x)_{1}=0 \text { i.e. }\left(x_{1}, x_{2}, x_{3}, \ldots\right) \mapsto\left(0, x_{1}, x_{2}, \ldots\right)
$$

Then:

$$
\begin{aligned}
& \operatorname{ker}(R)=0, \quad \operatorname{im}(R)=\left\{x \mid x_{1}=0\right\} \\
& \operatorname{ker}\left(R^{n}\right)=0, \quad \operatorname{im}\left(R^{n}\right)=\left\{x \mid x_{1}=\ldots=x_{n}=0\right\} \diamond
\end{aligned}
$$

Theorem 5.31 (Schauder theorem). K is compact iff K^{\prime} is compact.
Proof of theorem 5.27.

- $" \operatorname{ker}(K-\lambda \mathrm{id})=0 \Rightarrow \operatorname{im}(K-\lambda \mathrm{id})=X "$: Define $M_{n}:=\operatorname{im}\left((K-\lambda \mathrm{id})^{n}\right)$. Then

$$
X=M_{0} \supseteq M_{1} \supseteq M_{2} \supseteq \ldots \supseteq M_{n},
$$

we will prove that $\exists n \in \mathbb{N}: M_{n}=M_{n+1}$.
First, for construction suppose that M_{n+1} is a proper subspace M_{n}. [If $e_{1}=(1,0,0, \ldots)$, then $R^{n}\left(e_{1}\right)=e_{n}$.] Reisz lemma: If $U \subseteq X$ is a proper subspace, then there exists $x \in X$ with $\|x\|=1$ such that $\operatorname{dist}(x, U)>\frac{1}{2}$. By virtue of the Riesz Lemma I can pick $x_{n} \in M_{n}$ with $\left\|x_{n}\right\| \in M_{n}$ such
 that $\operatorname{dist}\left(x_{n}, M_{n+1}\right)\left(M_{n+1} \subseteq M_{n}\right)$. Claim: $\left(K x_{n}\right)_{n \in \mathbb{N}}$ is not cauchy (none of its subsequences). Proof of claim: For $m>n$:

$$
\begin{aligned}
\left\|K x_{n}-K x_{m}\right\| & =\left\|(K-\lambda) x_{n}-(K-\lambda) x_{m}-\lambda x_{m}+\lambda x_{n}\right\| \\
& =\left\|y+\lambda x_{n}\right\| \\
& =\lambda\left\|\frac{1}{\lambda} y+x_{n}\right\| \\
& >\frac{1}{2}
\end{aligned}
$$

Contradiction to K compact. We conclude $\exists n \in \mathbb{N}: M_{n+1}=M_{n}$.
Claim: $M_{n+1}=M_{n} \Rightarrow M_{n}=M_{n-1}$. Proof of claim: Let $x \in M_{n-1}$. Then:
$x \in M_{n-1} \quad \therefore \quad(K-\lambda) x \in M_{n}=M_{n+1}=\operatorname{im}(K-\lambda i d)^{n+1} \quad \therefore \quad(K-\lambda) x=(K-\lambda)^{n+1} z \quad \therefore \quad x=(K-\lambda)^{n} z \quad \therefore \quad x \in$
It follows that $M_{n} \subseteq M_{n-1}$ and hence $M_{n}=M_{n-1}$.
By induction $\operatorname{im}(K-\lambda i d)=M_{1}=M_{0}=X$.

- $\operatorname{im}(K-\lambda i d)=X \Rightarrow \operatorname{ker}(K-\lambda i d)=0 ": \operatorname{Assume} \operatorname{im}(K-\lambda i d)=X$. By Schauder theorem $\operatorname{ker}\left(K^{\prime}-\lambda i d\right)=0$. By part $1 \mathrm{im}\left(K^{\prime}-\lambda \mathrm{id}\right)=X$. It follows that $\left.\operatorname{ker}(K-\lambda i d)\right) 0$.

Example 5.32 (Fredholm equation).

$$
\begin{array}{ll}
\text { Fredholm equation of first type: } & \int_{0}^{1} K(x, y) \cdot f(y) \mathrm{d} y=g(x)
\end{array} \text { where } g \text { is given }
$$

K compact, $K f=g,(K-0) f=g,\left(\lambda-\frac{1}{\lambda}\right) f=g$, if $\frac{1}{\lambda} \in \sigma(K)$ then for each g exists unique solution f.

List of Symbols

Remark by the typesetter: This section is written by the typesetter of the script, and is not part of the lecture itself.

Sequence spaces $\left(\forall_{\mathrm{cf}}=\right.$ for all except finitely many)

$$
\left.\forall p, r \in[1, \infty]: p<r \Rightarrow \ell^{p} \subsetneq \ell^{r} \quad ; \quad \forall p \in\right] 1, \infty\left[:\{0\} \subsetneq c_{00} \subsetneq \ell^{1} \subsetneq \ell^{p} \subsetneq c_{0} \subsetneq c \subsetneq \ell^{\infty}=\mathbb{F}_{\mathrm{b}}^{\mathbb{N}}\right.
$$

Table 2: Hierarchy of some sequences spaces.

symbol	definition	scalar prod. space	$\begin{aligned} & \text { re- } \\ & \text { flex- } \\ & \text { ive } \\ & \hline \end{aligned}$	com- plete	weak- ly seq. compl.	sepa- rable	isometric isomorphy	comment				
$\left(\mathbb{F}_{\mathrm{b}}^{\mathbb{N}},\\|\cdot\\|_{\infty}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid x\right.$ bounded $\}$	\times	\times	\checkmark	\times	\times						
$\left(c,\\|\cdot\\|_{\infty}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid x\right.$ convergent $\}$	\times	\times	\checkmark	\times	\checkmark	$c^{*} \cong \ell^{1}$	c closed in $\mathbb{F}_{\mathrm{b}}^{\mathbb{N}}$				
$\left(c_{0},\\|\cdot\\|_{\infty}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid x_{n} \xrightarrow{n \rightarrow \infty} 0\right\}$	\times	\times	\checkmark	\times	\checkmark	$\left(c_{0}\right)^{*} \cong \ell^{1}$	c_{0} closed in $\mathbb{F}_{\mathrm{b}}^{\mathbb{N}}$				
$\left(c_{00},\\|\cdot\\|_{\infty}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid \forall_{\text {cf }} n \in \mathbb{N}: x_{n}=0\right\}$	\times		\times		\checkmark		c_{00} dense in c_{0}, ℓ^{2}				
$\left(\ell^{1},\\|\cdot\\|_{1}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid\\|x\\|_{1}<\infty\right\}$	\times	\times	\checkmark	\checkmark	\checkmark	$\left(\ell_{1}\right)^{*} \cong \ell^{\infty}$					
$\left(\ell^{2},\\|\cdot\\|_{2}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid\\|x\\|_{2}<\infty\right\}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	$\left(\ell_{2}\right)^{*} \cong \ell^{2}$					
$\left(\ell^{p},\\|\cdot\\|_{p}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid\\|x\\|_{p}<\infty\right\}$	\times	\checkmark	\checkmark	\checkmark	\checkmark	$\left(\ell^{p}\right)^{*} \cong \ell^{q}$					
$\left.\ell^{\infty},\\|\cdot\\|_{\infty}\right)$	$\left\{x \in \mathbb{F}^{\mathbb{N}} \mid\\|x\\|_{\infty}<\infty\right\}$	\times	\times	\checkmark	\times	\times						

Table 3: Some sequence spaces and their properties. Here $p, q \in] 1, \infty\left[\backslash\{2\}\right.$ with $\frac{1}{p}+\frac{1}{q}=1$.

Function spaces Let X be a set, I an arbitary (index) set, and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$.

X^{I}	$=\{f: I \rightarrow X X$-valued function on $I\}=\left\{\left(x_{i}\right)_{i \in I} X\right.$-valued family over $\left.I\right\}$	
X_{b}^{I}	$=\left\{f \in X^{I} \mid f\right.$ bounded $\}$	X metric space
$X^{(I)}$	$=\left\{\left(x_{i}\right)_{i \in I} \in X^{I} \mid \forall_{\mathrm{cf}} i \in I: x_{i}=0\right\}$	
$C(X)$	$=\{f: X \rightarrow \mathbb{F} \mid f$ continuous $\}$	X topological space

Table 4: Some function spaces.
$\left(C(K),\|\cdot\|_{\infty}\right)$
as banach space, 9
as linear space, 6
completeness, 10
dual space of, 37
non-reflexivity, 30
$U_{1}(0), B_{1}(0), S_{1}(0)$ (unit ball/sphere)
norm-compactness of $\overline{B_{1}(0)}, 8$
shape in $\ell^{p}, 6$
weak-compactness of $\overline{B_{1}(0)} \subseteq X, 40$
weak-sequentially-compactness of $\overline{B_{1}(0)} \subseteq X, 47$
weak*-compactness of $\overline{B_{1}(0)} \subseteq X^{*}, 40$
$\mathbb{F}^{\mathbb{N}}$
as linear space, 6
L^{p}
L^{1} dual space of, 27
L^{1} non-reflexivity, 30
L^{2} as Hilbert space, 13
L^{2} dual space of, 15
L^{∞} dual space of, 27
L^{∞} non-reflexivity, 30
$L^{p \in] 1, \infty[}$ dual space of, 27
$L^{p \in] 1, \infty[}$ reflexivity, 30
c
as banach space, 9
c_{0}
as banach space, 9
bidual space of, 36
dual space of, 36
non-reflexivity, 30
$c_{\text {cpt }}$
as banach space, 9
ℓ^{p}
ℓ^{1} dual space of, 27
ℓ^{2} as Hilbert space, 13
ℓ^{∞} dual space of, 27
$\ell^{p \in] 1, \infty[}$ dual space of, 26
as linear space, 6
shape of unit balls, 6
\mathcal{H} (general Hilbert space)
dual space of, 16
reflexivity, 30
$\mathcal{L}(M, N)$ (space of all bounded linear maps), 23
adjoint operator, 31
Alaoglu theorem, 40
annihilator, 58
Arzela-Ascoli theorem, 10
Axiom of Choice, 17
Back-Scholes equation, 41
Baire category theorem, 44, 45
Banach conjugate (of an operator), see dual operator
Banach space, 9
Banach-Bourbaki theorem, 40
Banach-Steinhaus theorem, 45, 47
basis
Hamel basis of vector space
definition, 25
existence, 25
Hilbert basis of Hilbert space
characterization, 19
countable, 20
definition, 18
existence, 18
properties, 18
Bessel inequality, 13
bidual space, 29
bounded from below (operator), 60
bounded operator, 23
boundedness
of a map, 23
of a set, 23
of a set of functions, 10
canonical embedding, 29
category, 44
Cauchy-Schwarz inequality, 13
chopping, 33
closed graph theorem, 51
closure (of a set), 44
compact operator, 31
completition, 30
concentration compactness principle, 37
conditional expectation, 54
continuity
lower semi-continuity, 42
continuous map, 49
convex set, 7
decomposition of identity in Hilbert spaces, 33
diagonal trick, 11, 48
diameter, 23
direct sum (of linear subspaces), 52
dirichlet principle, 41
distance, 7
drum
sound of, 60
dual (of an operator), see dual operator
dual operator, 30, 58
dual space
definition, 15, 24
norm on, 15, 24
equicontinuity, 10
essential image, 59
evaluation functional
as linear functional, 25
expectation value, 53
finite-rank operator, 32
Fourier theory, 21
Fourier transform
application in concentration compactness principle, 37
Fredholm alternative, 61
Fredholm equation, 62
Fredholm operator, 60

Gram-Schmidt orthonormalization, 20
graph of a map, 51
Hölder inequality, 25
Hahn-Banach theorem, 27-29
half space, open, 28
heat equation, 3,40
Hermitian conjugate (of an operator), see adjoint operator
Hermitian operator, 31
hermitian operator, 59
Hilbert space, 13
homeomorphism, 49
hyperplane, 15,28
ideal, 32
image
essential image, 59
image (of a linear operator), 52, 55
inner product, 12
interior (of a set), 44
inverse mapping theorem, 51
invertibility (of a linear operator), 55
kernel (of a linear operator), 52, 55
linear functional, 15, 24
linear order, 16
linear space, 6
subspace, 7
sum, 7
linear span, 7
Markov stochastic process, 60
matrix element, 33
max-norm, see sup-norm
maximal element, 16
Mazur's theorem, 29
Minkowski inequality, 26
neighborhood, 49
net, 47
nilpotence
in finite dimensions, 61
quasi-nilpotence, 61
norm, 7
equivalence, 7
nowhere dense, 44
open map, 49
open mapping principle, see open mapping theorem
open mapping theorem, 50
operator norm, 23
order
linear, 16
partial, 16
orthogonal complement, 13
orthogonality, 12
orthonormal set, 12
parallelogram identity, 13
Parseval identity, 18
partial order, 16
projection (on linear spaces), 52
projection lemma, 14
projections, existence of
in Hilbert spaces, 14
in normed spaces, 8
projection lemma, 14
projective space, 29
Pythagoras theorem, 12
Radon-Nikodym derivative, 21
Radon-Nikodym theorem, 21
random variable, 53
range (of a linear operator), see image (of a linear operator), see image (of a linear operator)
reflexive space, 30
relative compactness
characterization of, 10
resolvent, 55
Riesz representation theorem, 15
Schauder theorem, 61
Schur's lemma, 38
separable space, 20
Sobolev spaces, 41
spectral theorem for hermitian operators, 59
spectrum, 55
point spectrum, 55
sum (of subsets), 52
sup-norm, 9
tangent, 28
existence of, 28
unbounded operator, 25
uniform boundedness principle, 44, 45
upper bound, 16
Volterra equation, 4
weak convergence, 34
weak topology, 38
weak* convergence, 35
weak* topology, 38
Zorn's lemma, 17

