

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. M. Fraas, PhD A. Groh, S. Gottwald Summer term 2015 July 06, 2015

Functional Analysis Exercise Sheet 12

- Do not hand in this sheet. There will be no correction!
- Try to solve it within 2.5 hours.

Exercise 1 (10 points). Show that

$$\phi(f) := \int_{-1}^{1} x f(x) dx , \quad f \in L^{2}([-1,1]),$$

defines a bounded linear functional $\phi: L^2([-1,1]) \to \mathbb{C}$ and compute its norm.

Exercise 2 (10 Points). Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be norms on a linear space X such that $(X, \|\cdot\|_1)$ and $(X, \|\cdot\|_2)$ are complete. Prove that the norms are equivalent if there exists a constant C > 0 such that

$$||x||_2 \leqslant C ||x||_1 \qquad \forall x \in X.$$

Exercise 3 (3+5+2+10 Points). For $k \in C([0,1]^2)$ and $f \in L^1([0,1])$ let

$$(Tf)(x) := \int_0^1 k(x, y) f(y) \, dy \qquad \forall x \in [0, 1].$$

(i) Verify that (Tf)(x) is well-defined for every $x \in [0,1]$ and every $f \in L^1([0,1])$.

(ii) Show that $Tf \in C([0,1])$ for every $f \in L^1([0,1])$.

(*iii*) Prove that $T : (L^1([0,1]), \|\cdot\|_1) \to (C([0,1]), \|\cdot\|_\infty)$ is bounded.

(iv) Prove that T is compact.

Exercise 4 (20 Points). Let X be a normed space over the field \mathbb{K} and let $(x_n)_{n \in \mathbb{N}}$ be a weak Cauchy sequence in X, which means that $(l(x_n))_{n \in \mathbb{N}}$ is a Cauchy sequence in \mathbb{K} for each $l \in X^*$. Prove that $(x_n)_{n \in \mathbb{N}}$ is bounded, i.e.

$$\sup_{n\in\mathbb{N}}\|x_n\|<\infty.$$

Exercise 5 (20 Points). Let X be a normed space over the field \mathbb{K} , let $n \in \mathbb{N}$, let $x_1, \ldots, x_n \in X$ be linearly independent and let $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. Show that there exists $l \in X^*$ such that

$$l(x_j) = \alpha_j \qquad \forall j \in \mathbb{N} \text{ with } 1 \leq j \leq n.$$

Exercise 6 (13+7 Points). Let X be a normed space.

(i) Let $(x_n)_{n\in\mathbb{N}}$ be a Cauchy sequence in X that converges in the weak topology. Prove that in this case, $(x_n)_{n\in\mathbb{N}}$ converges also in norm.

[Hint: First show that $(f(x_n))_{n \in \mathbb{N}}$ converges uniformly in $f \in \{g \in X^* : \|g\|_* = 1\}$.]

(ii) Conclude: If the closed unit ball $B := \{x \in X : ||x|| \leq 1\}$ in X is weakly sequentially compact, then X is complete.

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/