

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT



## SINSTITUT



Summer term 2015 June 15, 2015

## Functional Analysis Exercise Sheet 9

## Weak convergence and topologies

• First version deadline: June 22 (13:30). Final hand in deadline: July 6 (13:30)

**Exercise 1** (7 points). Let  $\mathcal{H}$  be an infinite dimensional separable Hilbert space, and let  $S_1$  be the unit sphere and  $B_1$  the closed unit ball in  $\mathcal{H}$ .

- (i) What is the norm closure of  $S_1$ ?
- (ii) Prove that to each  $x \in B_1$  there exists a sequence  $(x_n)_n \subset S_1$  such that  $x_n \xrightarrow{w} x$ .
- (iii) Find the weak sequential closure of  $S_1$ , i.e. the set of all weak limits of weakly convergent sequences in  $S_1$ .
- (iv) Show that a sequence  $(x_n)_n \subset \mathcal{H}$  converges strongly to some  $x \in \mathcal{H}$  if and only if it converges weakly to x and  $||x_n|| \to ||x||$  as  $n \to \infty$ .

**Exercise 2** (8 points). Let  $(e_n)_{n \in \mathbb{N}} \subset c_0$  be such that the kth entry of  $e_n$  is equal to  $\delta_{nk}$ . *Prove:* 

- (i)  $(f(e_n))_{n \in \mathbb{N}} \in \ell^1$  for all  $f \in (c_0)^*$ .
- (ii)  $c_0^* \cong \ell^1$ , i.e.  $c_0^*$  and  $\ell^1$  are isometrically isomorphic.
- (iii) For  $1 , <math>(e_n)_{n \in \mathbb{N}}$  converges weakly in  $\ell^p$ .

**Exercise 3** (5 points). Consider the sequence  $(x^{(n)})_n \subset \ell^{\infty} \cong (\ell^1)^*$  given by  $x_k^{(n)} = 1$  for all  $k \leq n$  and  $x_k^{(n)} = 0$  otherwise. Prove that

$$x^{(n)} \xrightarrow{w^*} (1, 1, \dots)$$

but  $(x^{(n)})_n$  does not converge weakly.

- **Exercise 4** (5 points). (i) Show that if  $(f_n)_n \subset C([0,1])$  converges weakly to some  $f \in C([0,1])$ , then  $f_n(y) \to f(y)$  for all  $y \in [0,1]$ .
  - (ii) Find a sequence  $(f_n)_n \subset C([0,1])$  such that  $f_n(y) \to f(y)$  for all  $y \in [0,1]$  but  $(f_n)_n$  does not converge weakly to f.

**Exercise 5** (5 points). Decide which of the following operators  $L: X \to X$  are compact and compute their norms.

- (i)  $X = L^2([0, 2\pi]), Lf(x) := \int_0^{2\pi} \sin(x-y) f(y) dy.$
- (ii)  $X = C([0,1]), Lf(x) := \int_0^x f(y) \, dy.$
- (*iii*)  $X = \ell^2(\mathbb{N}), \ (Lx)_j := j^{-2}x_j.$

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/