

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

Prof. M. Fraas, PhD A. Groh, S. Gottwald

MATHEMATISCHES INSTITUT

Summer term 2015 June 8, 2015

FUNCTIONAL ANALYSIS EXERCISE SHEET 8

Reflexive spaces, Banach adjoint, and compact operators

• First version deadline: June 15 (13:30). Final hand in deadline: June 29 (13:30)

Exercise 1 (5 points). Prove that ℓ^p is reflexive for $1 and that <math>\ell^1$ is not reflexive.

Exercise 2 (5 points). Let X be a reflexive Banach space. Prove that for each $\varphi \in X^*$ there exists $x \in X$ with ||x|| = 1 such that $|\varphi(x)| = ||\varphi||$.

Exercise 3 (5 points). Suppose that U is a dense subspace of a normed space X. Prove:

- (i) A bounded linear map on X is uniquely determined by its action on U.
- (ii) U^* and X^* are isometrically isomorphic.

Exercise 4 (5 points). Consider $S : \ell^1 \to \ell^2, S(x_1, x_2, ...) = (0, x_1, x_2, ...)$. Prove that this defines a bounded linear map and find an operator $T : \ell^2 \to \ell^\infty$ such that $S' = \phi_1 T \phi_2^{-1}$, where S' denotes the Banach conjugate/adjoint of S, and $\phi_1 : \ell^\infty \to (\ell^1)^*, \phi_2 : \ell^2 \to (\ell^2)^*$ are the isomorphisms given by the dual pairing $\langle \cdot, \cdot \rangle$. Compute ||S|| and ||S'||.

Exercise 5 (5 points). Let X and Y be normed spaces. Decide which of the following operators are compact (and prove your claim):

- (i) $T: C[0,1] \to C[0,1], Tf(x) = f(0) + xf(1).$
- (*ii*) $id: X \to X, x \mapsto x$.
- (*iii*) $F \in \mathcal{L}(X, Y)$ with dim Ran $(F) < \infty$.

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/