

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. M. Fraas, PhD A. Groh, S. Gottwald

FUNCTIONAL ANALYSIS EXERCISE SHEET 7

Bounded linear maps and Hahn-Banach theorem

• First version deadline: June 8 (13:30). Final hand in deadline: June 22 (13:30)

Exercise 1 (5 points). Decide for which combinations of $X, Y \in \{C([-1, 1]), L^2([-1, 1])\}$, the prescription

$$T: X \to Y, \quad Tf(x) := f(x^2)$$

defines a bounded linear map $T \in \mathcal{L}(X, Y)$, and compute $||T||_{X \to Y}$ when it does.

Many special polynomials are the result of an orthogonalization process in a given Hilbert space. Here is an example:

Exercise 2 (5 points). Do the Gram-Schmidt orthogonalization process of the monomials $1, x, x^2, x^3$ in $L^2[(-1, 1)]$ to obtain the first four Legendre polynomials.

Note: Up to normalization, the orthogonalization of $1, x, ..., x^n$ yields the nth Legendre Polynomial given by

$$P_n(x) := \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d}x^n} [(x^2 - 1)^n].$$

Although we said in the lecture that objects in $(\ell^{\infty})^*$ do not possess an explicit description, we can still study them. Elements of $(\ell^{\infty})^*$ that are not represented by an element in ℓ^1 are sometimes denoted by LIM.

Exercise 3 (5 points). In the following let $\ell^{\infty} := \ell^{\infty}(\mathbb{N}, \mathbb{R})$ (i.e. the \mathbb{R} -vector space of real-valued bounded sequences).

- (a) Prove that there exists a function LIM : $\ell^{\infty} \to \mathbb{R}$ such that
 - (i) $\operatorname{LIM}(z + \alpha w) = \operatorname{LIM}(z) + \alpha \operatorname{LIM}(w)$ for all $z, w \in \ell^{\infty}, \alpha \in \mathbb{R}$,
 - (*ii*) $\liminf_{n\to\infty} z_n \leq \operatorname{LIM}(z) \leq \limsup_{n\to\infty} z_n$ for all $z \in \ell^{\infty}$,

and furthermore that for any $z \in \ell^{\infty}$ for which $\lim_{n\to\infty} z_n$ exists we have

(*iii*) $\operatorname{LIM}(z) = \lim_{n \to \infty} z_n$.

(b) What are the possible values of LIM(x) for $x = (x_n)_{n \in \mathbb{N}}$, where $x_n := (-1)^n$?

(c) Find the set $\{(\text{LIM}(x), \text{LIM}(y)) | \text{LIM satisfies } (i) - (iii) in (a)\} \subset \mathbb{R}^2$ for x as in (b) and $y = (0, 1, 0, 1, 0, \dots)$.

We remark, that a LIM that is invariant under left-shift, $LIM(x_1, x_2, ...) = LIM(x_2, ...)$, is called a Banach limit.

The Hahn-Banach theorem has many algebraic and geometric versions and several closely related consequences. Here we show some of its corollaries:

Exercise 4 (5 points). Let X be a normed linear space, let $Y \subset X$ be a subspace, and let $f \in Y^*$. Prove that there exists $F \in X^*$ such that $F|_Y = f$ and $||F||_{X^*} = ||f||_{Y^*}$.

Exercise 5 (5 points). Let X be a normed linear space and $x_0 \in X$.

- (i) Let Y be a proper subspace of X such that $x_0 \notin Y$ and $d := \operatorname{dist}(x_0, Y) > 0$. Prove that there exists $f \in X^*$ with $f|_Y = 0$, $f(x_0) = d$, and $||f||_{X^*} = 1$.
- (ii) Let V be a closed proper subspace of X such that $x_0 \notin V$. Prove that there exists $f \in X^*$ such that $f|_V = 0$ and $f(x_0) \neq 0$.

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/