

Prof. M. Fraas, PhD
Summer term 2015
June 1, 2015

A. Groh, S. Gottwald

Functional Analysis
 Exercise Sheet 7

Bounded linear maps and Hahn-Banach theorem

- First version deadline: June 8 (13:30). Final hand in deadline: June 22 (13:30)

Exercise 1 (5 points). Decide for which combinations of $X, Y \in\left\{C([-1,1]), L^{2}([-1,1])\right\}$, the prescription

$$
T: X \rightarrow Y, \quad T f(x):=f\left(x^{2}\right)
$$

defines a bounded linear map $T \in \mathcal{L}(X, Y)$, and compute $\|T\|_{X \rightarrow Y}$ when it does.

Many special polynomials are the result of an orthogonalization process in a given Hilbert space. Here is an example:

Exercise 2 (5 points). Do the Gram-Schmidt orthogonalization process of the monomials $1, x, x^{2}, x^{3}$ in $L^{2}[(-1,1)]$ to obtain the first four Legendre polynomials.

Note: Up to normalization, the orthogonalization of $1, x, \ldots, x^{n}$ yields the nth Legendre Polynomial given by

$$
P_{n}(x):=\frac{1}{2^{n} n!} \frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}}\left[\left(x^{2}-1\right)^{n}\right] .
$$

Although we said in the lecture that objects in $\left(\ell^{\infty}\right)^{*}$ do not possess an explicit description, we can still study them. Elements of $\left(\ell^{\infty}\right)^{*}$ that are not represented by an element in ℓ^{1} are sometimes denoted by LIM.

Exercise 3 (5 points). In the following let $\ell^{\infty}:=\ell^{\infty}(\mathbb{N}, \mathbb{R})$ (i.e. the \mathbb{R}-vector space of real-valued bounded sequences).
(a) Prove that there exists a function LIM: $\ell^{\infty} \rightarrow \mathbb{R}$ such that
(i) $\operatorname{LIM}(z+\alpha w)=\operatorname{LIM}(z)+\alpha \operatorname{LIM}(w) \quad$ for all $z, w \in \ell^{\infty}, \alpha \in \mathbb{R}$,
(ii) $\liminf _{n \rightarrow \infty} z_{n} \leq \operatorname{LIM}(z) \leq \lim \sup _{n \rightarrow \infty} z_{n} \quad$ for all $z \in \ell^{\infty}$,
and furthermore that for any $z \in \ell^{\infty}$ for which $\lim _{n \rightarrow \infty} z_{n}$ exists we have
(iii) $\operatorname{LIM}(z)=\lim _{n \rightarrow \infty} z_{n}$.
(b) What are the possible values of $\operatorname{LIM}(x)$ for $x=\left(x_{n}\right)_{n \in \mathbb{N}}$, where $x_{n}:=(-1)^{n}$?
(c) Find the set $\{(\operatorname{LIM}(x), \operatorname{LIM}(y)) \mid \operatorname{LIM}$ satisfies $(i)-(i i i)$ in $(a)\} \subset \mathbb{R}^{2}$ for x as in (b) and $y=(0,1,0,1,0, \ldots)$.

We remark, that a LIM that is invariant under left-shift, $\operatorname{LIM}\left(x_{1}, x_{2}, \ldots\right)=\operatorname{LIM}\left(x_{2}, \ldots\right)$, is called a Banach limit.

The Hahn-Banach theorem has many algebraic and geometric versions and several closely related consequences. Here we show some of its corollaries:

Exercise 4 (5 points). Let X be a normed linear space, let $Y \subset X$ be a subspace, and let $f \in Y^{*}$. Prove that there exists $F \in X^{*}$ such that $\left.F\right|_{Y}=f$ and $\|F\|_{X^{*}}=\|f\|_{Y^{*}}$.

Exercise 5 (5 points). Let X be a normed linear space and $x_{0} \in X$.
(i) Let Y be a proper subspace of X such that $x_{0} \notin Y$ and $d:=\operatorname{dist}\left(x_{0}, Y\right)>0$. Prove that there exists $f \in X^{*}$ with $\left.f\right|_{Y}=0, f\left(x_{0}\right)=d$, and $\|f\|_{X^{*}}=1$.
(ii) Let V be a closed proper subspace of X such that $x_{0} \notin V$. Prove that there exists $f \in X^{*}$ such that $\left.f\right|_{V}=0$ and $f\left(x_{0}\right) \neq 0$.

