

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. M. Fraas, PhD A. Groh, S. Gottwald Summer term 2015 May 26, 2015

Functional Analysis Exercise Sheet 6

Bounded linear maps

• First version deadline: June 1 (13:30). Final hand in deadline: June 15 (13:30)

Exercise 1 (5 points). (i) Let $\phi \in (\ell^2)^*$ be given by $\phi(x) := \sum_{n=1}^{\infty} \frac{x_n}{n}$ for all $x \in \ell^2$. Compute the norm of ϕ .

(ii) Let $L : \ell^1 \to \ell^1$ be the so called left-shift operator, given by $L(x_1, x_2, x_3, \dots) := (x_2, x_3, \dots)$. Show that L is a bounded linear map and compute ||L||.

Exercise 2 (5 points). Let $p \in (1, \infty)$ and let q be its Hölder conjugate, i.e. $\frac{1}{p} + \frac{1}{q} = 1$. For $x \in \ell^p$ and $y \in \ell^q$ let $\langle x, y \rangle := \sum_{j=1}^{\infty} x_j y_j$. Prove that

$$||T|| = \sup_{\substack{0 \neq y \in \ell^q \\ 0 \neq x \in \ell^p}} \frac{|\langle y, Tx \rangle|}{||y||_q ||x||_p}$$

for every bounded linear operator $T: \ell^p \to \ell^p$.

Exercise 3 (5 points). Let $U \subset \mathcal{H}$ be a closed non-trivial subspace of a Hilbert space \mathcal{H} . For $x \in \mathcal{H}$ let $Px \in U$ be the closest element in U to x (uniquely given by the Projection Theorem), i.e. $||Px - x|| = \inf_{y \in U} ||y - x||$. Show that $P : \mathcal{H} \to \mathcal{H}$ is a bounded linear operator with

$$||P|| = 1, \quad P^2 = P, \quad (y, Px) = (Py, x) \ \forall x, y \in \mathcal{H}.$$

Exercise 4 (5 points). Let $K \in C([0, 1]^2)$ and for $1 \leq p \leq \infty$ let

$$T_p: L^p([0,1]) \to L^p([0,1]), (T_p f)(x) := \int_0^1 K(x,y) f(y) \, dy \quad \forall f \in L^p([0,1]) \, .$$

Prove:

- (i) $||T_1|| \leq \sup_{y \in [0,1]} \int_0^1 |K(x,y)| dx.$
- (*ii*) $||T_2|| \leq ||K||_{L^2([0,1]^2)}$.
- (*iii*) $||T_{\infty}|| \leq \sup_{x \in [0,1]} \int_0^1 |K(x,y)| \, dy.$

Exercise 5 (5 points). Let $(c_{jk})_{j,k\in\mathbb{N}} \subset \mathbb{C}$ be such that $a := \sup_{k\in\mathbb{N}} \sum_{j\in\mathbb{N}} |c_{jk}| < \infty$ and $b := \sup_{j\in\mathbb{N}} \sum_{k\in\mathbb{N}} |c_{jk}| < \infty$. Prove that $T : \ell^p \to \ell^p, (Tx)_j := \sum_{k\in\mathbb{N}} c_{jk}x_k$ defines a bounded linear map with $||T|| \leq a^{1/p}b^{1/q}$, where $p \in (1,\infty)$ and q is its Hölder conjugate.

Exercise 6 (5 points). Let $\tau : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$ be a sesquilinear form on a Hilbert space \mathcal{H} with the property that

$$\exists C > 0 : |\tau(x, y)| \leq C ||x|| ||y|| \; \forall x, y \in \mathcal{H}.$$

Prove that there exists a unique bounded linear map A in \mathcal{H} such that $\tau(x, y) = (Ax, y)$ for all $x, y \in \mathcal{H}$.

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/