

Prof. M. Fraas, PhD
A. Groh, S. Gottwald


Summer term 2015
May 11, 2015

# Functional Analysis <br> Exercise Sheet 4 <br> <br> Hilbert Spaces 

 <br> <br> Hilbert Spaces}

- First version deadline: May 18 (13:30). Final hand in deadline: June 1 (13:30)

Exercise 1 (5 points). Here are several statements about the connection of an inner product and the norm it generates.
(i) Prove that $\|x\|:=\sqrt{(x, x)}$ is indeed a norm, if $(\cdot, \cdot)$ is an inner product.
(ii) Show that the inner product in a complex inner product space $V$ can be reconstructed from the induced norm by means of the polarization identity

$$
(x, y)=\frac{1}{4}\left\{\left(\|x+y\|^{2}-\|x-y\|^{2}\right)-i\left(\|x+i y\|^{2}-\|x-i y\|^{2}\right)\right\} \quad \forall x, y \in V
$$

(iii) Prove that a normed vector space $V$ is an inner product space iff its norm satisfies the parallelogram identity

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \forall x, y \in V
$$

The following two exercise are intended to practice computation with inner products.
Exercise 2 (5 points). Let $\mathcal{U}:=\left\{f \in L^{2}(0,1): f(t)=a t+b, a, b \in \mathbb{C}\right\}$ and let $g(t):=t^{3}$. Find the projection of $g$ on the subspace $\mathcal{U}$.

Exercise 3 (5 points). Let $\left\{e_{j}\right\}_{j=1}^{n}$ be an orthonormal set on a Hilbert space $\mathcal{H}$ and let $x \in \mathcal{H}$. Define $f: \mathbb{C}^{n} \rightarrow \mathbb{R}$ by

$$
f(c):=\left\|x-\sum_{j=1}^{n} c_{j} e_{j}\right\|^{2}, \quad c:=\left(c_{1}, \ldots, c_{n}\right)
$$

For which $c \in \mathbb{C}^{n}$ does this function achieve its minimum?
In the lecture we defined the orthogonal complement for a subspace of an inner product space $\mathcal{H}$. This definition extends naturally to any subset $M$ of the space, i.e.

$$
M^{\perp}:=\{x \in \mathcal{H}:(x, y)=0 \quad \text { for all } \quad y \in M\}
$$

In the following exercise you are asked to prove several important properties of orthogonal complements.

Exercise 4 (5 points). Let $\mathcal{H}$ be an inner product space and let $L, M \subset \mathcal{H}$ be non-empty. Prove the following statements:
(i) $M^{\perp}$ is a closed subspace of $\mathcal{H}$.
(ii) $L \subset M$ implies $L^{\perp} \supset M^{\perp}$.
(iii) $M \cap M^{\perp} \subset\{0\}, M \subset\left(M^{\perp}\right)^{\perp}$ and $M^{\perp}=\left(\left(M^{\perp}\right)^{\perp}\right)^{\perp}$.
(iv) $M^{\perp}=(\overline{\text { span } M})^{\perp}$, where span $M$ denotes the set of all finite linear combinations of elements of $M$.

And we end up this exercise sheet with two more questions involving subsets of inner product spaces.

Exercise 5 (5 points). Let $\mathcal{H}=C([-1,1])$ be equipped with $(f, g):=\int_{-1}^{1} \overline{f(x)} g(x) d x$. Compute the orthogonal complement of the set $M:=\{f \in \mathcal{H} \mid f(x)=f(-x) \forall x \in[0,1]\}$.

Exercise 6 (5 points). Let $M:=\left\{x \in c_{c}: \sum_{n=1}^{\infty} x_{n}=0\right\}$, where $c_{c}$ is the space of finitely supported sequences, i.e. $c_{c}:=\left\{x \in \ell^{\infty}: x_{n} \neq 0\right.$ for at most finitely many $\left.n \in \mathbb{N}\right\}$. Prove that $M$ is dense in $\ell^{2}$.

