

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. M. Fraas, PhD A. Groh, S. Gottwald Summer term 2015 May 11, 2015

Functional Analysis Exercise Sheet 4

Hilbert Spaces

• First version deadline: May 18 (13:30). Final hand in deadline: June 1 (13:30)

Exercise 1 (5 points). *Here are several statements about the connection of an inner product and the norm it generates.*

- (i) Prove that $||x|| := \sqrt{(x,x)}$ is indeed a norm, if (\cdot, \cdot) is an inner product.
- (ii) Show that the inner product in a complex inner product space V can be reconstructed from the induced norm by means of the polarization identity

$$(x, y) = \frac{1}{4} \left\{ (||x + y||^2 - ||x - y||^2) - i(||x + iy||^2 - ||x - iy||^2) \right\} \quad \forall x, y \in V.$$

(iii) Prove that a normed vector space V is an inner product space iff its norm satisfies the parallelogram identity

 $||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in V.$

The following two exercise are intended to practice computation with inner products.

Exercise 2 (5 points). Let $\mathcal{U} := \{f \in L^2(0,1) : f(t) = at + b, a, b \in \mathbb{C}\}$ and let $g(t) := t^3$. Find the projection of g on the subspace \mathcal{U} .

Exercise 3 (5 points). Let $\{e_j\}_{j=1}^n$ be an orthonormal set on a Hilbert space \mathcal{H} and let $x \in \mathcal{H}$. Define $f : \mathbb{C}^n \to \mathbb{R}$ by

$$f(c) := \left\| x - \sum_{j=1}^{n} c_j e_j \right\|^2, \quad c := (c_1, \dots, c_n).$$

For which $c \in \mathbb{C}^n$ does this function achieve its minimum?

In the lecture we defined the orthogonal complement for a subspace of an inner product space \mathcal{H} . This definition extends naturally to any subset M of the space, i.e.

$$M^{\perp} := \{ x \in \mathcal{H} : (x, y) = 0 \text{ for all } y \in M \}.$$

In the following exercise you are asked to prove several important properties of orthogonal complements.

Exercise 4 (5 points). Let \mathcal{H} be an inner product space and let $L, M \subset \mathcal{H}$ be non-empty. Prove the following statements:

- (i) M^{\perp} is a closed subspace of \mathcal{H} .
- (ii) $L \subset M$ implies $L^{\perp} \supset M^{\perp}$.
- (iii) $M \cap M^{\perp} \subset \{0\}, M \subset (M^{\perp})^{\perp}$ and $M^{\perp} = ((M^{\perp})^{\perp})^{\perp}$.
- (iv) $M^{\perp} = (\overline{span M})^{\perp}$, where span M denotes the set of all finite linear combinations of elements of M.

And we end up this exercise sheet with two more questions involving subsets of inner product spaces.

Exercise 5 (5 points). Let $\mathcal{H} = C([-1,1])$ be equipped with $(f,g) := \int_{-1}^{1} \overline{f(x)}g(x) dx$. Compute the orthogonal complement of the set $M := \{f \in \mathcal{H} \mid f(x) = f(-x) \forall x \in [0,1]\}.$

Exercise 6 (5 points). Let $M := \{x \in c_c : \sum_{n=1}^{\infty} x_n = 0\}$, where c_c is the space of finitely supported sequences, i.e. $c_c := \{x \in \ell^{\infty} : x_n \neq 0 \text{ for at most finitely many } n \in \mathbb{N}\}$. Prove that M is dense in ℓ^2 .

For general informations please visit http://www.math.lmu.de/~gottwald/15FA/