Mathematisches Institut
 der Universität München
 Prof. Dr. Peter Müller

Summer term 2014

Functional Analysis

E21 [8 points]. Let $p \in(1, \infty)$ and let q be the Hölder conjugate of p, i.e. $\frac{1}{p}+\frac{1}{q}=1$. For $x \in \ell^{p}$ and $y \in \ell^{q}$ let $\langle y, x\rangle:=\sum_{n \in \mathbb{N}} y_{n} x_{n}$ (defined due to Hölder's inequality, compare Lemma 1.27). Prove the following statements:
(i) $\|x\|_{p}=\sup _{0 \neq y \in \ell^{q}} \frac{|\langle y, x\rangle|}{\|y\|_{q}}$ for all $x \in \ell^{p}$.
(ii) $\|T\|=\sup _{\substack{0 \neq y \in \ell \\ 0 \neq x \in \ell^{p}}} \frac{|\langle y, T x\rangle|}{\|y\|_{q}\|x\|_{p}}$ for every bounded linear operator $T: \ell^{p} \rightarrow \ell^{p}$.

E22 [6 points]. Let p, q be defined as in E21. For $j, k \in \mathbb{N}$ let $c_{j, k} \in \mathbb{C}$ be such that

$$
a:=\sup _{k \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left|c_{j, k}\right|<\infty \quad \text { and } \quad b:=\sup _{j \in \mathbb{N}} \sum_{k \in \mathbb{N}}\left|c_{j, k}\right|<\infty .
$$

Prove that $(T x)_{j}:=\sum_{k \in \mathbb{N}} c_{j, k} x_{k}$ defines a linear operator $T: \ell^{p} \rightarrow \ell^{p}$ with $\|T\| \leqslant a^{1 / p} b^{1 / q}$.

E23 [4 points]. Let c_{0} (compare T5) be equipped with the norm $\|\cdot\|_{\infty}$. Find a bounded linear operator $T: c_{0} \rightarrow c_{0}$ such that

$$
\|T x\|_{\infty}<\|T\|
$$

for all $x \in \partial B_{1}(0)=\left\{x \in c_{0}:\|x\|_{\infty}=1\right\}$.

E24 [6 points]. As in E23, let c_{0} be equipped with $\|\cdot\|_{\infty}$. Prove the following statements:
(i) The family $\left\{e_{n}\right\}_{n \in \mathbb{N}}$, where $\left(e_{n}\right)_{k}:=\delta_{n k}$ for $k \in \mathbb{N}$, forms a Schauder basis of c_{0}.
(ii) $c_{0}^{*} \cong \ell^{1}$ (i.e. c_{0}^{*} and ℓ^{1} are isometrically isomorphic)
(iii) c_{0}^{*} can be identified with a subspace of $\left(\ell^{\infty}\right)^{*}$, in the sense that there exists a linear isometry $J: c_{0}^{*} \rightarrow\left(\ell^{\infty}\right)^{*}$.

Please hand in your solutions until next Wednesday (21.05.2014) before 12:00 in the designated box on the first floor. Don't forget to put your name and the letter of your exercise group on all of the sheets you submit.

For more details please visit http://www.math.lmu.de/ ${ }^{\text {gottwald/14FA/ }}$

