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show that I is surjective. For this, let f 2 c
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Moreover, by the same argument as above, we have kyk
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6 kfk, because (⇤) shows
that f
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= f if y
n

= f(e
n

). Thus y 2 `

1 and from (⇤) it follows that Iy = f . Hence
I is surjective, and therefore (since any isometry is injective) it is an isometric
isomorphism between `
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(iii) c
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can be identified with a subspace of (`1)⇤, in the sense that there exists a linear
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Hence kJfk⇤ = kfk⇤ for all f 2 (`1)⇤ and the claim follows.


