E24 [6 points]. As in E23, let c_0 be equipped with $\|\cdot\|_{\infty}$. Prove the following statements:

(i) The family $\{e_n\}_{n\in\mathbb{N}}$, where $(e_n)_k := \delta_{nk}$ for $k \in \mathbb{N}$, forms a Schauder basis of c_0 .

Proof. For any $x = (x_k)_{k \in \mathbb{N}} \in c_0$ we have

$$\lim_{n \to \infty} \left\| x - \sum_{k=1}^n x_k e_k \right\|_{\infty} = \lim_{n \to \infty} \sup_{k > n} |x_k| = \limsup_{n \to \infty} |x_n| = 0.$$

Hence $\{e_n\}_n$ is a Schauder basis of $(c_0, \|\cdot\|_{\infty})$.

(*ii*) $c_0^* \cong \ell^1$ (i.e. c_0^* and ℓ^1 are isometrically isomorphic)

Proof. Since for each $y \in \ell^1$ and $x \in c_0$, we have $\sum_n |y_n| |x_n| \leq ||y||_1 ||x||_\infty$ we may define the linear map

$$I:\ell^1 \to c_0^*, \ y \mapsto f_y, \quad f_y(x):=\sum_n y_n x_n,$$

where $||f_y||_* \leq ||y||_1$. Next, for $y \in \ell_1$ and fixed $N \in \mathbb{N}$ let

$$\tilde{x}_n := \frac{|y_n|}{y_n}$$
 if $n \leq N \wedge y_n \neq 0$, $\tilde{x}_n := 0$ otherwise.

It follows that $\tilde{x} \in c_0$ and

$$||f_y||_* = ||f_y||_* ||\tilde{x}||_{\infty} \ge |f_y(\tilde{x}_n)| = \sum_n y_n \tilde{x}_n = \sum_{n=1}^N |y_n|,$$

in particular $||y||_1 \leq ||f_y||_*$. Hence $||Iy||_* = ||y||_1$, i.e. I is an isometry. It remains to show that I is surjective. For this, let $f \in c_0^*$ and define $y_n := f(e_n)$, where $\{e_n\}_n$ is the Schauder basis of c_0 defined in (i). It follows for any $x \in c_0$ that

$$\sum_{n=1}^{\infty} f(e_n) x_n \stackrel{f \text{ linear }}{=} \lim_{N \to \infty} f\left(\sum_{n=1}^N x_n e_n\right) \stackrel{f \text{ cont. }}{=} f\left(\sum_{n=1}^\infty x_n e_n\right) = f(x). \quad (*)$$

Moreover, by the same argument as above, we have $||y||_1 \leq ||f||$, because (*) shows that $f_y = f$ if $y_n = f(e_n)$. Thus $y \in \ell^1$ and from (*) it follows that Iy = f. Hence I is surjective, and therefore (since any isometry is injective) it is an isometric isomorphism between ℓ^1 and c_0^* .

(*iii*) c_0^* can be identified with a subspace of $(\ell^{\infty})^*$, in the sense that there exists a linear isometry $J: c_0^* \to (\ell^{\infty})^*$.

Proof. For $f \in c_0^*$, it follows from the proof of (i) that $y_n := f(e_n)$ defines $y \in \ell^1$ with $\|y\|_1 = \|f\|_*$. Hence we may define $J : c_0^* \to (\ell^\infty)^*$ by $Jf(x) := \sum_n f(e_n)x_n$ $\forall x \in \ell^\infty$, since $\sum_n |f(e_n)| |x_n| \leq \|y\|_1 \|x\|_\infty$, i.e. $\|Jf\|_* \leq \|y\|_1 = \|f\|_*$. Moreover, note that by (*) we have Jf(x) = f(x) for all $x \in c_0 \subset \ell^\infty$ and therefore

$$\|Jf\|_{*} = \sup_{0 \neq x \in \ell^{\infty}} \frac{|Jf(x)|}{\|x\|_{\infty}} \ge \sup_{0 \neq x \in c_{0}} \frac{|Jf(x)|}{\|x\|_{\infty}} = \sup_{0 \neq x \in c_{0}} \frac{|f(x)|}{\|x\|_{\infty}} = \|f\|_{*}$$

Hence $||Jf||_* = ||f||_*$ for all $f \in (\ell^{\infty})^*$ and the claim follows.