E24 [6 points]. As in E23, let c_{0} be equipped with $\|\cdot\|_{\infty}$. Prove the following statements:
(i) The family $\left\{e_{n}\right\}_{n \in \mathbb{N}}$, where $\left(e_{n}\right)_{k}:=\delta_{n k}$ for $k \in \mathbb{N}$, forms a Schauder basis of c_{0}.

Proof. For any $x=\left(x_{k}\right)_{k \in \mathbb{N}} \in c_{0}$ we have

$$
\lim _{n \rightarrow \infty}\left\|x-\sum_{k=1}^{n} x_{k} e_{k}\right\|_{\infty}=\lim _{n \rightarrow \infty} \sup _{k>n}\left|x_{k}\right|=\limsup _{n \rightarrow \infty}\left|x_{n}\right|=0 .
$$

Hence $\left\{e_{n}\right\}_{n}$ is a Schauder basis of $\left(c_{0},\|\cdot\|_{\infty}\right)$.
(ii) $c_{0}^{*} \cong \ell^{1}$ (i.e. c_{0}^{*} and ℓ^{1} are isometrically isomorphic)

Proof. Since for each $y \in \ell^{1}$ and $x \in c_{0}$, we have $\sum_{n}\left|y_{n}\left\|x_{n} \mid \leqslant\right\| y\left\|_{1}\right\| x \|_{\infty}\right.$ we may define the linear map

$$
I: \ell^{1} \rightarrow c_{0}^{*}, y \mapsto f_{y}, \quad f_{y}(x):=\sum_{n} y_{n} x_{n}
$$

where $\left\|f_{y}\right\|_{*} \leqslant\|y\|_{1}$. Next, for $y \in \ell_{1}$ and fixed $N \in \mathbb{N}$ let

$$
\tilde{x}_{n}:=\frac{\left|y_{n}\right|}{y_{n}} \quad \text { if } n \leqslant N \wedge y_{n} \neq 0, \quad \tilde{x}_{n}:=0 \text { otherwise. }
$$

It follows that $\tilde{x} \in c_{0}$ and

$$
\left\|f_{y}\right\|_{*}=\left\|f_{y}\right\|_{*}\|\tilde{x}\|_{\infty} \geqslant\left|f_{y}\left(\tilde{x}_{n}\right)\right|=\sum_{n} y_{n} \tilde{x}_{n}=\sum_{n=1}^{N}\left|y_{n}\right|
$$

in particular $\|y\|_{1} \leqslant\left\|f_{y}\right\|_{*}$. Hence $\|I y\|_{*}=\|y\|_{1}$, i.e. I is an isometry. It remains to show that I is surjective. For this, let $f \in c_{0}^{*}$ and define $y_{n}:=f\left(e_{n}\right)$, where $\left\{e_{n}\right\}_{n}$ is the Schauder basis of c_{0} defined in (i). It follows for any $x \in c_{0}$ that

$$
\begin{equation*}
\sum_{n=1}^{\infty} f\left(e_{n}\right) x_{n} \stackrel{f \text { linear }}{=} \lim _{N \rightarrow \infty} f\left(\sum_{n=1}^{N} x_{n} e_{n}\right) \stackrel{f \text { cont. }}{=} f\left(\sum_{n=1}^{\infty} x_{n} e_{n}\right)=f(x) . \tag{*}
\end{equation*}
$$

Moreover, by the same argument as above, we have $\|y\|_{1} \leqslant\|f\|$, because ($*$) shows that $f_{y}=f$ if $y_{n}=f\left(e_{n}\right)$. Thus $y \in \ell^{1}$ and from (*) it follows that $I y=f$. Hence I is surjective, and therefore (since any isometry is injective) it is an isometric isomorphism between ℓ^{1} and c_{0}^{*}.
(iii) c_{0}^{*} can be identified with a subspace of $\left(\ell^{\infty}\right)^{*}$, in the sense that there exists a linear isometry $J: c_{0}^{*} \rightarrow\left(\ell^{\infty}\right)^{*}$.

Proof. For $f \in c_{0}^{*}$, it follows from the proof of (i) that $y_{n}:=f\left(e_{n}\right)$ defines $y \in \ell^{1}$ with $\|y\|_{1}=\|f\|_{*}$. Hence we may define $J: c_{0}^{*} \rightarrow\left(\ell^{\infty}\right)^{*}$ by $J f(x):=\sum_{n} f\left(e_{n}\right) x_{n}$ $\forall x \in \ell^{\infty}$, since $\sum_{n}\left|f\left(e_{n}\right)\left\|x_{n} \mid \leqslant\right\| y\left\|_{1}\right\| x \|_{\infty}\right.$, i.e. $\|J f\|_{*} \leqslant\|y\|_{1}=\|f\|_{*}$. Moreover, note that by $(*)$ we have $J f(x)=f(x)$ for all $x \in c_{0} \subset \ell^{\infty}$ and therefore

$$
\|J f\|_{*}=\sup _{0 \neq x \in \ell^{\infty}} \frac{|J f(x)|}{\|x\|_{\infty}} \geqslant \sup _{0 \neq x \in c_{0}} \frac{|J f(x)|}{\|x\|_{\infty}}=\sup _{0 \neq x \in c_{0}} \frac{|f(x)|}{\|x\|_{\infty}}=\|f\|_{*}
$$

Hence $\|J f\|_{*}=\|f\|_{*}$ for all $f \in\left(\ell^{\infty}\right)^{*}$ and the claim follows.

