Mathematisches Institut DER UNIVERSITÄT MÜNCHEN Prof. Dr. Peter Müller

Functional Analysis

E17 [7 points]. Let X be a normed space with dim $X = \infty$ and let $B \subset X$ be a Hamel basis of *X*.

(*i*) Let $L \subset X$ be a finite-dimensional subspace. Prove that L is nowhere dense in X.

Proof. Since L is closed (see e.g. E15), we need to show that $\dot{L} = \emptyset$. For this, let $x \in L$ and $\varepsilon > 0$. We conclude that $B_{\varepsilon}(x) \not\subset L$, which proves that *L* has no interior points. There is $b \in B$ such that $b \notin L$ (otherwise dim $L = \infty$) and therefore $\frac{b}{\|b\|}$ does not belong to *L* as well (otherwise $b = \frac{2\|b\|}{\varepsilon}(y-x) \in L$). But $y := x + \frac{\varepsilon}{2}$ $y \in B_{\varepsilon}(x)$, since $||x-y|| = \frac{\varepsilon}{2} < \varepsilon$. \Box

(*ii*) Show that if *X* is complete, then *B* is uncountable.

Proof. Assume that *B* was countable, i.e. $B = \{b_i\}_{i \in \mathbb{N}}$. For $N \in \mathbb{N}$ let A_N be the linear subspace of *X* given by $A_N = \text{span}\{b_1, \ldots, b_N\} = \{\sum_{n=1}^N \alpha_n b_n | \alpha_i \in \mathbb{K}\}.$ It follows from (i) , that A_N is nowhere dense. Moreover, since B is a Hamel basis, for each $x \in X$ there exists $N_x \in \mathbb{N}$ such that $x \in A_{N_x}$, in particular $X = \bigcup_{N \in \mathbb{N}} A_N$. Hence X is meagre, which contradicts (a corollary to) Baire's theorem, which says that *X* has to be non-meagre if it is complete (and non-empty). \Box

(*iii*) Let P be the linear space of all real-valued polynomials on R and for $p \in \mathcal{P}$, given by $p(t) = \sum_{k=0}^{n} a_k t^k$, define $||p|| := \sum_{k=0}^{n} |a_k|$. Prove that $(\mathcal{P}, ||\cdot||)$ is a normed space and argue whether or not it is complete.

Proof. The fact that $\|\cdot\|$ is a norm on P follows directly from the properties of the absolute value on R and the linearity of the sum. If *M* denotes the set of all monomials $m_k : \mathbb{R} \to \mathbb{R}, t \mapsto t^k$, then *M* is a Hamel basis of P , since any $p \in P$ can be written as $p = \sum_{k=0}^{n} a_k m_k$ for some $n \in \mathbb{N}$. Since $M = \{m_k\}_{k=0}^{\infty}$ is countable, it follows from (ii) that P cannot be complete. \Box