O. Forster: Analytic Number Theory

6. Dirichlet Series

6.1. Definition. A Dirichlet series is a series of the form

(e 9]
a’n

[ =3 (seo)

n=1
where (a,,),>1 is an arbitrary sequence of complex numbers.

The abscissa of absolute convergence of this series is defined as
. = |an]

o = Oy =inf{oc € R: — < e RU{xo0}.

o o.(f) :=inf{o nEZI s oo} {£o0}

If > (Jan|/n”) does not converge for any o € R, then o, = +o0, if it converges for
all o0 € R, then o, = —o0.

An analogous argument as in the case of the zeta function shows that a Dirichlet series
with abscissa of absolute convergence o, converges absolutely and uniformly in every

halfplane H (o), o > 0,.

Example. The Dirichlet series

g(s) ==Y %

has 0,(g) = 1. We will see however that the series converges for every s € H(0). Of
course the convergence is only conditional and not absolute if 0 < Re(s) < 1.

We need some preparations.

6.2. Lemma (Abel summation). Let (a,)n>1 and (by,)n>1 be two sequences of complex
numbers and set

n

A, = Z ay, Ay = 0 (empty sum).

k=1

Then we have for alln >m > 1
n n—1
Z agby = Apby, — Ap—1by, — Z Ak<bk+1 - bk)-
k=m k=m
Remark. This can be viewed as an analogon of the formula for partial integration
b b
| Fagade = Fe)g®) - Plagla) - [ Pla)ga)de.

Chap. 6 last revised: 2001-11-21 6.1



6. Dirichlet series

Proof.

n—1
Zakbk = Z Ak_Ak 1 bk— ZAkbk_ Z Agbrga

k=m—1

n—1 n—1
= Aubu+ D Ay = Y Aibrir — Apoibin

k=m k=m

= Apbp — Ap_1bim, Z Ap(ber — br),  qeed.

6.3. Lemma. Let s € C with 0 := Re(s) > 0. Then we have for all m,n > 1

1 1

ns ms

|s|] |1 1
<

~ o In® mol

d /1 1
Proof. We may assume n > m. Since — (—) =—-5-

dx
/" dx 1 1
—S = — — —.
m strl ns ms

Taking the absolute values, we get the estimate

1 1

ne me

S

l»a-i—l o

,  q.ed.

8

Remark. For sy € C and an angle o with 0 < a < 7/2, we define the angular region
Ang(sg, ) := {sg +re® :r >0 and |¢| < a}.
For any s € Ang(so, &) \ {so} we have

|s—s0] 1 1

Re(s —sy) cos¢ ~ cosa’

hence the estimate in lemma 6.3 can be rewritten as

1 1 1
T cos«

‘_ — —| for all s € Ang(0, ).
n®  ms me

6.4. Theorem. Let

G,

ns
n=1
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be a Dirichlet series such that for some so € C the partial sums Z — are bounded
n=1 nso

for N — oo. Then the Dirichlet series converges for every s € C with
Re(s) > oy := Re(so).

The convergence is uniform on every compact subset
K C H(op) = {s € C:Re(s) > go}.

Hence f is a holomorphic function in H(oy).

Proof. Since

o o ~
1 Qy, - ap,
f(s) = g g where @, == —,
i nSO nS S0 n nSO
n=

n=1

we may suppose without loss of generality that sy = 0. By hypothesis there exists a
constant C; > 0 such that

N
>a
n=1

The compact set K is contained in some angular region Ang(0, ) with 0 < o < 7/2.
We define

<y forall NeN.

1
C, = d o, :=inf{R : K 0.
- and o inf{Re(s): s € K} >

Now we apply the Abel summation lemma 6.2 to the sum ) a, - (1/n°), s € K. Setting
Ay = ZnN:1 an, we get for N > M > 1

N N— 1
s Sl )
S et 2 MG
This leads to the estimate (with o = Re(s))
N-1
1 1 1
RS S
Ms‘Jr 1nZMns (n+1)s
N-1
1 1 1
R Bl
R E +C nZM e (1)

:201%+010a( L )

IN

204

Me N

Cl Cl<2+ca)

< — < —
Me <2+Ca> - Mo+
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6. Dirichlet series

This becomes arbitrarily small if M is sufficently large. This implies the asserted uni-
form convergence on K of the Dirichlet series.

6.5. Theorem. Let

[e o]

fs) =

G,
ns
n=1

be a Dirichlet series which converges for some so € C. Then the series converges
uniformly in every angular region Ang(sg, ), 0 < o < w/2. In particular

lim f(s) = f(s0),

S$— S0

when s approaches so within an angular region Ang(sg, «v).

Proof. As in the proof of theorem 6.4 we may suppose sy = 0. Set C,, := 1/ cos . Let
e > 0 be given. Since Y 7 | a, converges, there exists an ng € N, such that

L

With Ay, = ZZ:M ak, Anr -1 = 0, we have by the Abel summation formula

£
1+ C,

for all N > M > n,.

N

1 1
P = Ay + ZAMn<ns )

From this, we get for all s € Ang(0, ), 0 := Re(s), and N > M > ng the estimate

N-1

N, 1 1 1

’7;4; §€1W+61§E—m
<atals Z( n+1)”>
:51+810a<%—%)§51+510a:s.

This shows the uniform convergence of the Dirichlet series in Ang(0, ). Therefore f is
continuous in Ang(0, ), which implies the last assertion of the theorem.

o0

6.6. Definition. Let f(s) = > ™ e a Dirichlet series. The abscissa of convergence
n=1 ns
of f is defined by

o0

oc = 0.(f) :=inf {Re(s) : > % converges }.

n=1
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By theorem 6.4 this is the same as

N
o. = inf {Re(s) : Y I is bounded for N — oo}
nS

n=1
and it follows that the series converges to a holomorphic function in the halfplane
H(o.).

Examples. Consider the three Dirichlet series

O=Eh wo=EE g

We have 0,(¢) = 04(9) = 0,(1/¢) = 1. Clearly 0.(¢) = 1 and o.(g) = 0, since the
partial sums 3. (—1)"! are bounded. The abscissa of convergence o.(1/¢) is not
known; of course o.(1/¢) < 1. One conjectures that o.(1/¢) = 3, which is equivalent
to the Riemann Hypothesis, which we will discuss in a later chapter.

Remark. Multiplying the zeta series by 27° yields 27°((s) = > 7, ﬁ Hence

g(s) = (1= 27°)¢(s).

6.7. Theorem. If the Dirichlet series f(s) = > I has a finite abscissa of con-
nS

n=1

vergence ., then for the abscissa of absolute convergence o, the following estimate
holds:

o.<0q <o+ 1

> ay,
Proof. Without loss of generality we may suppose 0. = 0. Then ) — converges for
n=1 M

every € > (. We have to show that

$ o
"< for all o, > 1.
nox*

n=1

To see this, write o, = 1+ 2¢, € > 0. Then

|an| _ || 1

ne ne  nlte

Since |a,|/n® is bounded for n — oo and >_°7  1/n'"® < oo, the assertion follows.

Remarks. a) It can be easily seen that o, = —oo implies 0, = —00.

b) The above examples show that the cases 0, = 0. and o, = 0.+ 1 do actually occur.
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¢) That o, and 0. may be different is quite surprising if one looks at the situation
for power series: If a power series ZZO:O a,z" converges for some zy # 0, it converges
absolutely for every z with |z| < |z

6.8. Theorem (Landau). Let

be a Dirichlet series with non-negative coefficients a,, > 0 and finite abscissa of absolute
convergence g, € R. Then the function f, which is holomorphic in the halfplane H (o),
cannot be continued analytically as a holomorphic function to any neighborhood of o,.

Proof. Assume to the contrary that there exists a small open disk D around o, such
that f can be analytically continued to a holomorphic function in H(o,) U D, which
we denote again by f. Then the Taylor series of f at the point oy := 0, + 1 has radius
of convergence > 1. Since

= (—logn)*a,
f(k) (Ul) = Z nol ’
n=1
the Taylor series has the form
— P (o) -~ (—logn)*a,
fs)=>" TI(S —o)f =) .—(S —o1)".
k=0 k=0 n=1

By hypothesis there exists a real 0 < o, such that the Taylor series converges for s = o.
We have

o (logn)fa, (o — o) Snxe= (logn)¥(oy — o)F  a,
BD D ey D DD D et
k=0 n=1 n=1 k=0
where the reordering is allowed since all terms are non-negative. Now
[e.e]

Z (logn)* (o — o)* — pllogn)(o1—0) _ L

no—o1

)

k=0

hence we have a convergent series

flo) =Y i eyt
n=1

ne—or po1 ne
n=1

Thus the abscissa of absolute convergence is < o < o,, a contradiction. Hence the
assumption is false, which proves the theorem.
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6.9. Theorem (Identity theorem for Dirichlet series). Let

e’} a, 00 bn
— -n d — o
F) =2 and o) =30

be two Dirichlet series that converge in a common halfplane H(oy). If there exists a
sequence s, € H(oy), v € Ny, with lim,_., Re(s,) = oo and

f(sy) =g(s,) forallv>1,

then a, = b, for alln > 1.

Proof. Passing to the difference f — g shows that it suffices to prove the theorem for
the case where ¢ is identically zero. So we suppose that

f(sy) =0 forall v>1.

If not all a,, = 0, then there exists a minimal k such that a; # 0. We have

J(s) = %(“’f +nz>k (nc;Z)s)'

It suffices to show that there exists a o, € R such that
>
2 (/)

for this would imply f(s) # 0 for Re(s) > o, contradicting f(s,) = 0 for all v. The

an
sum -
2 Tufk)?
such that

anl_ Ja
2 T =1

n>M

< |a;| for all s with Re(s) > o,

converges absolutely for some ¢’ € R. Therefore we can find an M > k

Further there exists a ¢” € R such that

] _ la
2 b S

k<n<M

Combining the last two estimates shows

’Z (nc;yl;)s

n>k

|ay|
2

< for all s with Re(s) > max(c’,0”), q.e.d.

Remark. A similar theorem is not true for arbitrary holomorphic functions in halfplanes.
For example, the sine function satisfies

sin(rn) = 0 for all integers n,
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without being identically zero. This shows also that not every function holomorphic in
a halfplane H (o) can be expanded in a Dirichlet series.

6.10. Theorem. Leta,b: Ny — C be two arithmetical functions such that the Dirichlet
series

:Za(n) and g(s
n=1 n° n=1

converge absolutely in a common halfplane H (o). Then we have for the product

F(s)o(s) = S @),

This Dirichlet series converges absolutely in H(oy).

Proof. Since the series for f(s) and g(s) converge absolutely for s € H(oy), they can
be multiplied term by term

Il
e
—
I
M8
~—~
S
*
=

and the product series converges absolutely, q.e.d.

> 1

Examples. i) The zeta function ((s) = ) — is the Dirichlet series associated to the
n=1"

constant arithmetical function u(n) = 1. Since u * u = dy, it follows

(S 4) (21 -3 h

n—= n= n=1

which gives a new proof of

1 o

C— E () (cf. theorem 4.5).
nS

n=1

ii) The Dirichlet series associated to the identity map ¢ : N; — Nj is

[e.e] oo 1
Z% Znsl S_l)

n=1 n=1
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which converges absolutely for Re(s) > 2. For the divisor sum function o we have
u =0, cf. (3.15.iii), which implies

o(n)

C(s)¢(s—1) = Z for Re(s) > 2.

ns
n=1

iii) In a similar way, the formula ¢ = p ¢ for the Euler phi function, cf. (3.15.i), yields

((s—=1) o e(n) ot Rols
O _; —— for Re(s) > 2

6.11. Theorem (Euler product for Dirichlet series). Leta : Ny — C be a multiplicative
arithmetical function such that the Dirichlet series

)=y A

n=1

=

has abscissa of absolute convergence o, < 00.

a) Then we have in H(o,) the product representation

fo) = H(i a](jzzj)) _ H<1 N a]()f) N a](;?:) N ag;:’) 4. )

peP “k=0 peP

where the product is extended over the set P of all primes.

b) If the arithmetical function a is completely multiplicative, this can be simplified to

_ a(p)\
f(s)_H<1_p—f) .

peP
Proof. Let P C P be a finite set of primes and N(P) the set of all positive integers whose

prime decomposition contains only primes from the set P. Since a is multiplicative, we
have for an integer n with prime decomposition n = plfl pSQ e

a(n) = a(p)a(ph?) - ... a(plr).

It follows by multiplying the infinite series term by term that

alp) | a(@®)  a(®’) N _ a(n)
[T +=5+ ot )= .

ns
pEP neN(P)

Letting P = P,, be set of all primes < m and passing to the limit m — oo, we obtain
part a) the theorem.
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If a is completely multiplicative, then a(p*) = a(p)*, hence

i a(p®) _ i(a(p)>’f _ (1 B a(p))l’

ks S s
k=0 p k=0 p p

proving part b).

Examples. i) The Euler product for the zeta function
1y-1
) =1] (1 - —s>
p€eP p

is a special case of this theorem.

ii) Since pu(p) = —1 and u(p*) = 0 for k > 2, the formula for the inverse of the zeta
function

= u(n) 1y 1
> e =10-5) -5

s
n=1 peP p

also follows from this theorem.
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