O. Forster: Analytic Number Theory

4. Riemann Zeta Function. Euler Product

4.1. Definition. For a complex s € C with Re(s) > 1, the Riemann zeta function is
defined by the series
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Let us first study the convergence of this infinite series. Following an old tradition, we
denote the real and imaginary part of s by o resp. t, i.e.

s=o+1t, o,teR.

We have
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Since Y — converges for all real o > 1, we see that the zeta series converges absolutely
n=1"N

and uniformly in every halfplane H(oy), o9 > 1, where
H(op) :={s € C: Re(s) > oo}

It follows by a theorem of Weierstrass that ¢ is a holomorphic (= regular analytic)
function in the halfplane

H(1) ={s € C:Re(s) > 1}.

We will see later that ¢ can be continued analytically to a meromorphic function in
the whole complex plane C, which is holomorphic in C \ {1} and has a pole of first
order at s = 1. A weaker statement is

4.2. Proposition. li\m1 ((0) = 0.

Proof. Let R > 0 be any given bound. Since -, L — o0, there exists an N > 1 such

n
that
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The function o — ZN L is continuous on R, hence there exists an € > 0 such that

n=1 no
|
Z— > R forall o witho <1+e¢.
nU
n=1

A fortiori we have » "> | n% > R for all 1 < o <1+ ¢. This proves the proposition.

4.3. Theorem (Euler product). For all s € C with Re(s) > 1 one has

OR | e

peP

where the product is extended over the set P of all primes.

Proof. Since [p~®| < 1/p < 1/2, we can use the geometric series

1 =1
1—p— _,;z%’

which converges absolutely. If P C P is any finite set of primes, the product
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peEP Mk=0

can be calculated by termwise multiplication and we obtain

(7)) > &

peP “k=0 neN(P)

where N(P) is the set of all positive integers n whose prime decomposition contains
only primes from the set P. (Here the unique prime factorization is used.) Letting
P = P,, be set of all primes < m and passing to the limit m — oo, we obtain the
assertion of the theorem.

Remark. The Euler product can be used to give another proof of the infinitude of
primes. If the set P of all primes were finite, the Euler product [ ,cp(1 — p~*)~! would
be continuous at s = 1, which contradicts the fact that lim,\ ; ((0) = occ.

4.4. We recall some facts from the theory of analytic functions of a complex variable

about infinite products. Let G C C be an open set. For a continuous function f : G — C
and a compact subset K C G we define the maximum norm

1fllxe = sup{|f(2)] : 2 € K} € Ry.
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(The supremum is < oo since f is continous.) Let now f, : G — C, v > 1, be a
sequence of holomorphic functions. The infinite product

oo

F(z) =[]0+ f(2)

v=1

is said to be normally convergent on a compact subset K C G, if

o
D lfullxe < oo
v=1
In this case, the product converges absolutely and uniformly on K. (The converse is not
true, as can be seen by taking the constant functions f, = —% for all v.) The product is

said to be normally convergent in G if it converges normally on any compact subset of
K C G. The limit F of a normally convergent infinite product of holomorphic functions
1 + f, is again holomorphic and F(zy) = 0 for a particular point zy € G if and only if
one of the factors vanishes in zg.

4.5. Theorem. The Riemann zeta function has no zeroes in the half plane
H(1) ={s € C:Re(s) > 1}.
For its inverse one has

T 3)- 552

peP

where p 1s the Mdobius function.

Proof. The first assertion follows from the fact that the Euler product for the zeta
function converges normally in H (1) and all factors (1 —p~*)~! have no zeroes in H(1).
Inverting the product representation for 1/((s) yields 1/{(s) = [[(1 — p~*). To prove
the last equation, let P a finite set of primes and N'(P) the set of all positive integers
n that can be written as a product n = pyps - .. .- p, of distinct primes p; € P, (r > 0).
Then, since (—1)" = p(p1 - ... pr),

(-)- % 57

peP neN’(P)

Letting P = P,, be set of all primes < m and passing to the limit m — oo, we obtain
the assertion of the theorem. Note that p(n) =0 for all n € Ny N\ U, N'(P,,).

4.6. We recall now some facts about the logarithm function. (By logarithm we always
mean the natural logarithm with basis e = 2.718....) We have the Taylor expansion

o0 zn
log(1 = —1)" 12 forall z € C with |2| < 1.
og(l+2) Z( ) - or all z with |z|

n=1
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From this follows

n

1 =z .
1Og(1—z> :Z; for all z € C with |z| < 1.

(Of course here the principal branch of the logarithm with log(1) = 0 is understood.)

If f: G — Cis a holomorphic function without zeroes in a simply connected domain
G C C, then there exists a holomorphic branch of the logarithm of f, i.e. a holomorphic
function

logf:G— C with 1)@ = f(2) for all z € G.

This function log f is uniquely determined up to an additive constant 2mwin, n € Z.

Since the zeta function has no zeroes in the simply connected halfplane H(1), we can
form the logarithm of the zeta function, where we select the branch of log ¢ that takes
real values on the real half line |1, ool

4.7. Theorem. For the logarithm of the zeta function in the halfplane H(1), the
following equation holds:

logC() = 3 — Zst-

pElP’ = pElP’

The function
- 1
iy L

k=2

| =
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S

S

is bounded in H(1).
Remark. If one defines the prime zeta function by
1
P(s) := Z — fors € H(1),
peP p

the formula of the theorem may be written as

log((s) = P(:S) = P(s)+ F(s), where F(s)= Z P(ks).

k=1 k=2

Proof. Using the Euler product we obtain

=1 = 1
log ((s Zk’g(l_ )Xt e

cP k=1 k=1 peP
1 =1 1
SISO
peP k=2 peP



O. Forster: Analytic Number Theory

To prove the boundedness of

in H(1), we use the estimate (with o = Re(s) > 1)

|P(ks)| < P(ko) < P(k) = k_znk

pE]P’

= (" dx dz 1
< g o
_Z/nlxk /1 ok k-1

4.8. Corollary (Euler).

Z——— L
B 507 110 T

pElP’

Proof. Since the difference |P(s) — log((s)| is bounded for Re(s) > 1 we get, using
proposition 4.2,

1
lim P = lim( —) = 0.
o\.1 <0> o\.1 Z jod

peP
This implies the assertion.

Remark. The corollary gives another proof that there are infinitely many primes, but
says more. Comparing with

e}

1
Z$<OO

n=1

we can conclude that the density of primes is in some sense greater than the density
of square numbers.

The following theorem is a variant of theorem 4.7 and gives an interesting formula for
the difference between P(s) and log((s).

4.9. Theorem. We have the following representation of the prime zeta function for
Re(s) > 1

@ log C(ks).

NE

P(s) = 3 — = log((s) +

peP

T

2
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Proof. We start from the formula of theorem 4.7

2. P(ks)
T

log ((s) =

k=1

We have as in the proof of theorem 4.7 the estimate

[Pks)| < Plho) <

2
< ot (where o = Re(s)),
which implies
N2 2= 1 22 ¢
l _— = — _— = =, —
[ log ¢(s ; k*c o ; k2 o o

with the constant ¢ = 2¢(2). Therefore the series > - (u(k)/k)log((ks) converges
absolutely:

Substituting log ((ks) = > ,°, P(kls)/l we get

pk)
K

K

log C (ks) Z wu(k)P(kls) _ Z M<k)P(k3€s)
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We conclude this chapter with an interesting application of therem 4.5.

4.10. Theorem. The probability that two random numbers m,n € Ny are coprime is
6/72 ~ 61%, more precisely: For real x > 1 let

Copr(z) := {(m,n) € N; x Ny : m,n <z and m,n coprime}.
Then

i TPO0PE(@) 1 6

—00 22 C(Q) 2

Proof. Let A(x) be the set of all pairs m, n of integers with 1 < m,n < x and

Ai(z) :={(n,m) € A(x) : ged(m,n) = k}.
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Then A(x) is the disjoint union of all Ay(x), k =1,2,...,[z], and for every k we have
a bijection

Copr(%) — Ag(z), (m,n)— (km, kn).

Therefore

Z #Copr(%) = |z]?.

k<z

Now we can apply the inversion formula of theorem 3.16 and obtain
712
Copr(x) = k {—J )
#Copr(a) = 3 ) 7

Since 0 < (z/k) — |z/k] < 1, it follows that (x/k)? — |z/k|? < 2x/k, hence

X

conr(o) - 3 u(h) ()

1
< QxZ z < 2z(14logx) = O(zlogz),
k<z

SO we can write

#Copr(z) 3 p(k) +O(logw).

2 k2 T
k<z

On the other hand Y77, u(k)/k* = 1/¢(2) by theorem 4.5, hence
ulk) 1 1 1
__— | < i Z).
O lex o)

Combining this with the previous estimate yields

k<z

#Copr(z) 1 log x
2 _g(z)+0( T )

which implies the assertion of the theorem.

2
Remark. The fact ((2) = % will be proven in the next chapter.
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