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1. Divisibility. Unique Factorization Theorem

1.1. Definition. Let x, y ∈ Z be two integers. We define

x | y (read: x divides y),

iff there exists an integer q such that y = qx. We write x ∤ y, if this is not the case.

1.2. We list some simple properties of divisibility for numbers x, y, z ∈ Z.

i) (x | y ∧ y | z) =⇒ x | z.

ii) x | 0 for all x ∈ Z.

iii) 0 | x =⇒ x = 0.

iv) 1 | x and −1 | x for all x ∈ Z.

v) (x | y ∧ y | x) =⇒ x = ±y.

1.3. Definition. A prime number is an integer p ≥ 2 such that there doesn’t exist any
integer x with 1 < x < p and x | p.

So the only positive divisors of a prime number p are 1 and p. Note that by definition
1 is not a prime number.

Every integer x ≥ 2 is either a prime or a product of a finite number of primes. This can
be easily proved by induction on x. The assertion is certainly true for x = 2. Let now
x > 2, and assume that the assertion has already been proved for all integers x′ < x. If
x is a prime, we are done. Otherwise there exists a decomposition x = yz with integers
2 ≤ y, z < x. By induction hypothesis, y and z can be written as products of primes

y =

n∏

i=1

pi, z =

m∏

j=1

qj, (m, n ≥ 1, pi, qj prime)

Multiplying these two formulas gives the desired prime factorization of x.

Using the convention that an empty product (with zero factors) equals 1, we can state
that any positive integer x is a product of primes

x =
n∏

i=1

pi, n ≥ 0, pi primes.

We can now state and prove Euclid’s famous theorem on the infinitude of primes.

1.4. Theorem (Euclid). There exist infinitely many prime numbers.

Proof. Assume to the contrary that there are only finitely many primes and that

p1 := 2, p2 := 3, p3, . . . , pn
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is a complete list of all primes. The integer

x := p1 · p2 · . . . · pn + 1

must be a product of primes, hence must be divisible by at least one of the pi, i =
1, . . . , n. But this is impossible since

x

pi

= (integer) +
1

pi

is not an integer. Hence the assumption is false and there exist infinitely many primes.

Whereas the existence of a prime factorization was easy to prove, the uniqueness is
much harder. For this purpose we need some preparations.

1.5. Definition. Two integers x, y ∈ Z are called relatively prime or coprime (G.
teilerfremd) if they are not both equal to 0 and there does not exist an integer d > 1
with d | x and d | y.

This is equivalent to saying that x and y have no common prime factor.

In particular, if p is a prime and x an integer with p ∤ x, then p and x are relatively
prime.

1.6. Theorem. Two integers x, y are coprime iff there exist integers n, m such that

nx + my = 1.

Proof. “⇐” If nx + my = 1, every common divisor d of x and y is also a divisor of 1,
hence d = ±1. So x and y are coprime.

“⇒” Suppose that x, y are coprime. Without loss of generality we may assume x, y ≥ 0.
We prove the theorem by induction on max(x, y).

The assertion is trivially true for max(x, y) = 1.

Let now N := max(x, y) > 1 und suppose that the assertion has already been proved
for all integers x′, y′ with max(x′, y′) < N . Since x, y are coprime, we have x 6= y,
so we may suppose 0 < x < y. Then (x, y − x) is a pair of coprime numbers with
max(x, y − x) < N . By induction hypothesis there exist integers n, m with

nx + m(y − x) = 1,

which implies (n − m)x + my = 1, q.e.d.

1.7. Theorem. Let x, y ∈ Z. If a prime p divides the product xy, then p | x or p | y.

Proof. If p | x, we are done. Otherwise p and x are coprime, hence there exist integers
n, m with np + mx = 1. Multiplying this equation by y and using xy = kp with an
integer k, we obtain

y = npy + mxy = npy + mkp = p(ny + mk).
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This shows p | y, q.e.d.

1.8. Theorem (Unique factorization theorem). Every positive integer can be written
as a (finite) product of prime numbers. This decomposition is unique up to order.

Proof. The existence of a prime factorization has already been proved, so it remains to
show uniqueness. Let

x = p1 · . . . · pn = q1 · . . . · qm (∗)

be two prime factorizations of a positive integer x. We must show that m = n and
after rearrangement pi = qi for all i. We may assume n ≤ m. We prove the assertion
by induction on n.

a) If n = 0, it follows x = 1 and m = 0, hence the assertion is true in this case.

b) Induction step n−1 → n, (n ≥ 1). We have p1 | q1 · . . . · qm, hence by theorem 1.7,
p1 must divide one of the factors qi and since qi is prime, we must have p1 = qi. After
reordering we may assume i = 1. Dividing equation (∗) by p1 we get

p2 · . . . · pn = q2 · . . . · qm.

By induction hypothesis we have n = m and, after reordering, pi = qi for all i, q.e.d.

If we collect multiple occurrences of the same prime, we can write every positive integer
in a unique way as

x =

n∏

i=1

pei

i , p1 < p2 < . . . < pn primes, n ≥ 0, ei > 0.

This is called the canonical prime factorization of x.

Sometimes a variant of this representation is useful. For an integer x 6= 0 and a prime
p we define

ordp(x) := sup{e ∈ N0 : pe | x}.

Then every nonzero integer x can be written as

x = sign(x)
∏

p

pordp(x)

where the product is extended over all primes. Note that ordp(x) = 0 for all but a finite
number of primes, so there is no problem with the convergence of the infinite product.

1.9. Definition (Greatest common divisor). Let x, y ∈ Z. An integer d is called greatest

common divisor of x and y, if the following two conditions are satisfied:

i) d ist a common divisor of x and y, i.e. d | x and d | y.

ii) If d1 is any common divisor of x and y, then d1 | d.
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If d1 and d2 are two greatest common divisors of x and y, then d1 | d2 and d2 | d1,
hence by 1.2.v) we have d1 = ±d2. Therefore the greatest common divisor is (in case
of existence) uniquely determined up to sign. The positive one is denoted by gcd(x, y).
The existence can be seen using the prime factor decomposition. For x 6= 0 and y 6= 0,

gcd(x, y) =
∏

p

pmin(ordp(x),ordp(y))

and gcd(x, 0) = gcd(0, x) = |x|, gcd(0, 0) = 0.

Two integers x, y are relatively prime iff gcd(x, y) = 1.

The following is a generalization of theorem 1.6.

1.10. Theorem. Let x, y ∈ Z. An integer d is greatest common divisor of x and y iff

i) d is a common divisor of x and y, and

ii) there exist integers n, m such that

nx + my = d.

Proof. The case when at least one of x, y equals 0 is trivial, so we may suppose x 6= 0,
y 6= 0.

“⇒” If d is greatest common divisor of x and y, then x/d and y/d are coprime, hence
by theorem 1.6 there exist integers n, m with

n
x

d
+ m

y

d
= 1,

which implies ii).

The implication “⇐” is trivial.

1.11. Definition (Least common multiple). Let x, y ∈ Z. An integer m is called least

common multiple of x and y, if the following two conditions are satisfied:

i) m ist a common multiple of x and y, i.e. x | m and y | m.

ii) If m1 is any common multiple of x and y, then m | m1.

As in the case of the greatest common divisor, the least common multiple of x and y
is uniquely determined up to sign. The positive one is denoted by lcm(x, y). For x 6= 0
and y 6= 0 the following equation holds

lcm(x, y) =
∏

p

pmax(ord(x),ord(y))

and lcm(x, 0) = lcm(0, x) = lcm(0, 0) = 0.

The definitions of the greatest common divisor and least common multiple can be
extended in a straightforward way to more than two arguments. One has

gcd(x1, . . . , xn) = gcd(gcd(x1, . . . , xn−1), xn),

lcm(x1, . . . , xn) = lcm(lcm(x1, . . . , xn−1), xn).
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