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Introduction

Let Y be an analytic (resp. algebraic) curve in a 3-dimensional complex analytic
(resp. algebraic) manifold X. In several occasions one has to consider on Y not
only the reduced structure, but a “multiplicity structure”, which is defined by an
ideal J ⊂ OX with zero set V (J ) = Y but which does not necessarily consist
of all functions vanishing on Y . The structure sheaf OX/J of the multiplicity
structure may then contain nilpotent elements. For example let Y be a smooth (or
more generally locally complete intersection) algebraic curve in affine 3-space A3.
Ferrand/Szpiro (see [6]) have shown that Y is a set-theoretic complete intersection.
The two polynomials f , g which describe Y set-theoretically generate an ideal J
which defines a multiplicity 2 structure on Y . For the proof of this theorem, the
ideal J is constructed first in such a way that the conormal module J /J 2 is
globally free of rank 2 and then it follows from a theorem of Serre that J can be
generated by 2 elements.

Another instance where curves with multiplicity structures are useful is in the
study of vector bundles of rank 2 on 3-manifolds. Here the curves occur as zero
sets of sections of the bundle. These curves carry a natural multiplicity structure.
Under some hypotheses one can reconstruct the bundles from the curves (see e. g.
[1], [2], [4], [5]).

In this paper, after introducing some notations and conventions, we recall first the
Ferrand construction for multiplicity 2 structures and proceed then to a systematic
study of structures of higher multiplicity, whose reduction is a smooth curve. Up
to multiplicity 4 we obtain a complete description.

§ 0. Notations and generalities

0.1. Although most of the results are also valid in the algebraic case, we work
here in the analytic category. By a manifold we mean always a complex-analytic
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manifold X. An analytic subspace Z ⊂ X may be non-reduced, i.e. is a pair
Z = (|Z|,OZ), where the structure sheaf is of the form OZ = OX/IZ , where
IZ ⊂ OZ is a coherent ideal sheaf with zero-set |Z|. For two subspaces Z1, Z2 of
X write Z1 ⊂ Z2 if IZ1 ⊃ IZ2. The intersection Z1 ∩Z2 is the subspace defined by
the ideal IZ1∩Z2 := IZ1 + IZ2.

0.2. In this paper we are mainly concerned with the following situation: There is
given a smooth subspace (i.e. submanifold) Y ⊂ X and another subspace Z ⊂ Y
of X with |Z| = |Y |. In a neighborhood of a point a ∈ Y there exists a holomorphic
retraction X → Y , hence also a retraction

π : Z → Y,

which is the identity on the underlying topological spaces.

(More precisely, one should write π : Z ∩ U → Y ∩ U , U neighborhood of a. But
we omit the indication of U for simplicity of notation.)

Now the following conditions are equivalent:

i) Z is Cohen-Macaulay (i.e. all local rings OZ,z are Cohen-Macaulay)

ii) π is a flat map.

iii) The image sheaf π∗OZ is locally free over OY .

If Y is connected, the rank of π∗OZ is then constant and equal to the multiplicity
of Z.

If Z is Cohen-Macaulay, the multiplicity can be calculated also in the following
way: In a neighborhood of a point a ∈ Z let H be a submanifold of X with
dima Y + dimaH = dimaX and such that H and Y intersect transversally at a.
Then the multiplicity of Z at a equals

µ = dimC OH∩Z,a.

0.3. The intersection H ∩ Z defines the structure of a multiple point on {a}. If
codima Y = 2, H can be considered as a 2-plane. Briançon [3] has classified all
multiplicity structures on 0 ∈ C2 up to multiplicity µ = 6. We give the first cases
of his list. For a suitable local coordinate system (x, y) at 0 ∈ C2, the possible
ideals for multiplicity 6 4 are

µ I
1 (x, y)
2 (x, y2)
3 (x, y3), (x2, xy, y2)
4 (x, y4), (x2, y2), (x2, xy, y3)
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0.4. A subspace Z of a manifold X is called a locally complete intersectio if for
every point a ∈ Z the ideal IZ,a can be generated by r = codima Z elements.
Locally complete intersections are Cohen-Macaulay.

In the sequel, we will often use the abbreviation CM for Cohen-Macaulay and l.c.i.
for locally complete intersection.

§ 1. The Ferrand construction

In this section we recall the Ferrand construction [4] of the doubling of a l.c.i.,
since this is the basis for our later studies of higher multiplicities.

1.1. Let Y ⊂ X be a l.c.i. of codimension 2 in a manifold X. The sheaf νY :=
IY /I

2
Y is then locally free of rank 2 over OY = OX/IY , i.e. corresponds to a vector

bundle of rank 2 on Y , which is by definition the conormal bundle of Y . (In the
sequel we will identify vector bundles and locally free sheaves.) Now let there be
given a line bundle L on Y , i.e. a locally free sheaf of rank 1, and an epimorphism

β : νY → L.

Then we can define an ideal IZ ⊂ OX with I2
Y ⊂ IZ ⊂ IY by the following exact

sequence

0 −→
IZ
I2
Y

−→ νY −→ L −→ 0. (1)

An easy calculation shows that IZ is again locally generated by two elements: In
a neighborhood of a point y ∈ Y we may choose generators g1, g2 of IY,y such that
their classes

.
gi := gi mod I2

Y ∈ νY,y satisfy: β(
.
g1) = 0 and and β(

.
g2) is a generator

of the stalk Ly. Therefore (IZ/I
2
Y )y is generated by the class

.
g1, hence

IZ,y = (g1) + I2
Y,y = (g1, g

2
1, g1g2, g

2
2) = (g1, g

2
2).

The subspace Z = (|Y |,OX/IZ) is called the Ferrand doubling of Y with respect
to the epimorphism β : νY → L. (The multiplicity of Z is twice the multiplicity of
Y .)

It is clear that two epimorphisms β : νY → L and β ′ : νY → L′ define the same
subspace Z iff there exists an isomorphism ϕ : L→ L′ such that β ′ = ϕ ◦ β.

1.2. Since Z is again a l.c.i., the conormal sheaf νZ = IZ/I
2
Z is locally free, i.e. a

vector bundle. We consider its restriction νZ |Y := νZ ⊗OY . We have

νZ |Y = (IZ/I
2
Z) ⊗ (OX/IY ) ∼= IZ/IY IZ .
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On the other hand, by definition L = IY /IZ , hence

L2 = (IZ/I
2
Z)⊗2 ∼= I2

Y /IY IZ .

Therefore we get an exact sequence which can be fitted together with (1) to yield
the following exact sequence of vector bundles on Y :

0 −→ L2 −→ νZ |Y −→ IZ/I
2
Y −→ 0.

From this it follows in particular that

det(νZ |Y ) = det(νY ) ⊗ L. (2)

This formula can be used to calculate the dualizing sheaf ωZ of Z. The dualizing
sheaf, which is just the canonical line bundle in the case of a manifold, can be
calculated for a l.c.i. Z in a manifold X by the formula

ωZ = (ωX |Z) ⊗ det(ν|Z)∗.

Since a similar formula holds for ωY , we get from (2)

ωZ|Y = ωY ⊗ L−1.

1.3. If Y ⊂ X is a submanifold and Z ⊃ Y a CM-subspace with |Z| = |Y | and
multiplicity 2, one can conversely show that I2

Y ⊂ IZ ⊂ IY and L := IY /IZ is
locally free of rank 1, hence Z is obtained from Y by the Ferrand construction by
means of the natural epimorphism

νY = IY /I
2
Y → IY /IZ = L.

§ 2. Primitive extensions

2.1. From now on, we consider always the following situation: Let Y be a smooth
connected curve in a 3-dimensional manifold X. We are interested in Cohen-
Macaulay subspaces Z of X with Z ⊃ Y and |Z| = |Y |.

Such a CM subspace Z is called a primitive extension of Y if Z is locally contained
in a smooth surface F .

Let us first study the local structure of a primitive extension. We may assume that
there is a coordinate system (t, x, y) around the considered point such that F is
given by IF = (x) and Y is given by IY = (x, y). Since Z is a CM codimension 1
subspace of F , it is given in this coordinate system by IZ = (x, yk+1) for a certain
natural number k. This shows that Z is even a l.c.i. (of multiplicity k + 1).
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To study the global structure of Z, we define a filtration

Y = Z0 ⊂ Z1 ⊂ . . . ⊂ Zk = Z

as follows: We denote by Y (j) the j-th infinitesimal neighborhood of Y in X, given
by the ideal IY (j) = Ij+1

Y and set

Zj := Z ∩ Y (j), i.e. IZj
= IZ + Ij+1

Y .

With respect to the local coordinates considered above, we have

IZj
= (x, yj+1).

Thus Zj is a l.c.i. of multiplicity j + 1.

%%%TODO Let us assume k > 1. Then we have in particular the extension
Y ⊂ Z1 of multiplicity 2, which can be obtained by the Ferrand construction with
the line bundle

L = IY /IZ1 = IY /(IZ + I2
Y ).

We will say in this situation that Z ⊃ Y is a primitive extension of type L.

2.2. Proposition. Let Z ⊃ Y be a primitive extension of multiplicity k + 1 and
type L. Then one has for j = 1, ..., k exact sequences

0 −→ Lj −→ OZj
−→ OZj−1

−→ 0,

where Zj = Z∩Y (j). Further, with the abbreviation Ij := IZj
one has isomorphisms

Lj ∼= Ij+1/Ij ∼= IjY /I1I
j−1
Y .

Proof. We remark first that Ij−1/Ij is a locally free OY -module of rank 1. This is
verified by a local calculation. (In the above coordinates, Ij−1/Ij is generated by
the class of yj.) On the other band, one has surjective OY -morphisms

Lj =
(

IY
I1

)⊗j
ϕ

−→
IjY

I1I
j−1
Y

ψ
−→

IZ + IjY
IZ + Ij+1

Y

=
Ij−1

Ij

Since Lj and Ij−1/Ij are locally free of rank 1, ϕ and ψ have to be isomorphisms.

2.3. Proposition. Let Z ⊃ Y be a primitive extension of multiplicity k + 1 and
type L. Then there is an exact sequence

0 −→ Lk+1 τ
−→ νZ |Y −→ νY −→ L −→ 0.

The dualizing sheaf of Z satisfies

ωZ|Y = ωY ⊗ L−k.
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Proof. We have

νZ |Y = (IZ/I
2
Z) ⊗ (OX/IY ) ∼= IZ/IY IZ ,

L = IY /I1 = IY /(IZ + I2
Y ),

Lk+1 ∼= Ik+1
Y /I1I

k
Y .

The inclusions

Ik+1
Y ⊂ IZ ⊂ IY ,

I1I
k
Y ⊂ IY IZ ⊂ I2

Y ⊂ I1

induce the sequence we are looking for:

0 −→
Ik+1
Y

I1IkY
−→

IZ
IY IZ

−→
IY
I2
Y

−→
IY
I1

−→ 0.

The exactness is again verified by local calculation. Taking determinants, we get
from it

det(νZ |Y ) = det(νY ) ⊗ Lk.

This implies
ωZ|Y = ωY ⊗ L−k.

Remark. The above formula for ωZ gives this line bundle only after restriction to
Y . Thus one needs information about the restriction map Pic(Z) → Pic(Y ). For
this we refer to § 3.2.

Now we study the following problem: Let there be given a primitive extension
Z ′ = Zk−1 ⊃ Y of multiplicity k > 1 and type L. Under what conditions can we
extend further to a primitive extension Z ⊃ Z ′ ⊃ Y of multiplicity k+1? Here we
have

2.4. Proposition. Let Z ′ ⊃ Y be a primitive extension of type L and multiplicity
k and let

τ ′ : Lk → νZ′|Y

be the natural injection (given by Proposition 2.3). Then there is a bijection between
the set of primitive extensions Z ⊃ Z ′ ⊃ Y of multiplicity k + 1 and the set of
retractions for τ ′, i.e. the set of epimorphisms

β : νZ′|Y → Lk

with β ◦ τ ′ = idLk . This correspondence is given by the sequence

0 −→
IZ

IY IZ′

α
−→

IZ′

IY IZ′

= νZ′|Y
β

−→ Lk −→ 0. (3)
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Proof. a) Suppose first given a retraction β for τ ′ and define IZ by the exact
sequence (3). That Z ⊃ Z ′ ⊃ Y is a primitive extension of multiplicity k+ 1
can be seen locally: In suitable coordinates,

IY = (x, y), IZ′ = (x, yk).

In the considered neighborhood, a basis of the bundle νZ′|Y is constituted by
the classes

.
x,

.
yk of x, yk modulo IY IZ′ and Lk = IkY /I1I

k−1
Y is generated by

e := yk modI1I
k−1
Y . Since β is a retraction, we have

β(
.
yk) = e, β(

.
x) = ce.

Replacing x by x′ = x − cyk, we have IY = (x′, y), IZ′ = (x′, yk) and
β(

.
x′) = 0. Then Ker β is generated by the class of x′, hence

IZ = (x′) + IY IZ′ = (x′, yk+1),

which shows that Z is a primitive extension of multiplicity k + 1.

b) Conversely, if Z ⊃ Z ′ ⊃ Y is a primitive extension of multiplicity k + 1, we
have IZ ⊃ IY IZ′ and

Im
(

IZ
IY IZ′

α
−→

IZ′

IY IZ′

)

is a subline bundle of νZ′|Y , which is the complement of the subline bundle
Im(τ ′) ⊂ νZ′|Y (this is verified by a local calculation). Hence the epimorphism
of νZ′|Y to the cokernel of α can be identified with the projection of νZ′|Y
onto the summand Im(τ ′) ∼= Lk in the direct sum decomposition νZ′|Y =
Im(α) ⊕ Im(τ ′).

c) It is clear that different retractions β1, β2 : νZ′|Y → Lk define different ideals
IZ1 , IZ2 .

Remark. For the sequence

0 −→ Lk
τ ′

−→ νZ′ |Y −→ νY −→ L −→ 0

let M := Ker(νY → L). This is a line bundle with M = det(νY ) ⊗ L−1. The
existence of a retraction for τ ′ is equivalent to the splitting of the sequence

0 −→ Lk −→ νZ′|Y −→ M −→ 0.

Therefore we obtain



8 Bǎnicǎ / Forster

2.5. Corollary. Let Z ′ ⊃ Y be a primitive extension of type L and multiplicity
k > 2.

a) A sufficient condition for the existence of a primitive extension Z ⊃ Z ′ ⊃ Y
of multiplicity k + 1 is

H1(Y, det(νY )∗ ⊗ Lk+1) = 0.

b) If there exists one primitive extension Z0 ⊃ Z ′ ⊃ Y of multiplicity k + 1,
then the set of all primitive extensions Z ⊃ Z ′ ⊃ Y of multiplicity k + 1 is
in bijective correspondence with

H0(Y, det(νY )∗ ⊗ Lk+1).

§ 3. Cohen-Macaulay filtrations,
quasi-primitive extensions

3.1. Let Y be a smooth connected curve in a 3-dimensional manifoldX and Z ⊃ Y
a CM subspace of X with |Z| = |Y |. We will first define the Cohen-Macaulay fil-
tration of the extension Z ⊃ Y . If Y (j) denotes the j-th infinitesimal neighborhood
of Y , the intersection Z∩Y (j) will not be necessarily Cohen-Macaulay, since in the
primary decomposition of IZ∩Y (j) there might be embedded components. Throwing
away all these embedded components, we get a well-defined largest CM subspace

Zj ⊂ Z ∩ Y (j).

Let k ∈ N be minimal with Z ⊂ Y (k), (since Y is connected, k exists). Then of
course Z = Zk. The sequence

Y = Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zk = Z

is called the CM-filtration of Z. One has always Ij+1
Y ⊂ IZj

and there exists a
0-dimensional subset S ⊂ Y such that

IZj ,y = IZ,y + Ij+1
Y,y for all y ∈ Y r S and j = 0, . . . , k.

For abbreviation let us write Ij := IZj
. We assert that

IY Ij−1 ⊂ Ij .

This is trivially true in all points y ∈ Y r S, hence (IY Ij−1 + Ij)/Ij is an ideal in
OZj

with support contained in S. Since OZj
is CM, this ideal must be identically

zero, which proves our assertion. Therefore

Lj := Ij−1/Ij
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are modules over OY , which are torsion-free (since OZj
is CM), hence locally free.

Thus Z = Zk can be obtained from Y = Z0 by successive extensions

0 −→ Lj −→ OZj
−→ OZj−1

−→ 0, j = 1, . . . , k, (4)

by vector bundles Lj . The multiplicity of Z is therefore

µ(Z) = 1 +
k

∑

j=1

rank(Lj)

and we have

χ(Z,OZ) = χ(Y,OY ) +
k

∑

j=1

χ(Y, Lj).

3.2. Since Lj = Ij−1/Ij is an ideal of square zero in OZj
, we get from (4) exact

sequences

0 −→ Lj −→ O∗

Zj
−→ O∗

Zj−1
−→ 0,

hence exact sequences

H1(Y, Lj) −→ Pic(Zj) −→ Pic(Zj−1) −→ H2(Y, Lj)

from which one can read off sufficient cohomological conditions for the bijectivity
of the restriction map Pic(Z) → Pic(Y ).

3.3. Analogously to the formula IY Ij−1 ⊂ Ij one proves IiIj ⊂ Ii+j+1 for all i,
j. This induces a natural multiplicative structure

Li ⊗ Lj → Li+j .

In particular, one has morphisms

L⊗j
1 → Lj ,

which are surjective over Y r S.

3.4. We have always a surjective map

νY =
IY
I2
Y

−→
IY
I1

= L1

Hence rank(L1) 6 rank(νY ) = 2. The case rank(L1) = 0 is trivial, since this implies
Lj = 0 for all j > 0, hence Z = Y . So there remain two non-trivial cases:
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i) rank(L1) = 1,

ii) rank(L1) = 2.

The second case occurs iff I1 = I2
Y i.e. Y (1) ⊂ Z. In the first case we will call

the extension Z ⊃ Y quasi-primitive. Since generically (i. e. over Y r S) we have
I1 = IZ + I2

Y , the condition rank(L1) = 1 is equivalent to the condition that
generically emdimy Z = 2. Thus Z ⊃ Y is a quasi-primitive extension iff it is a
primitive extension outside a zero-dimensional subset of Y .

3.5. Let now Z ⊃ Y be a quasi-primitive extension with CM-filtration

Y = Z0 ⊂ Z1 ⊂ . . . ⊂ Zk = Z

and define the bundles Lj = Ij−1/Ij as above. We will use the abbreviation L :=
L1. Since the maps Lj → Lj are generically surjective, it follows that all Lj are
line bundles and that there are divisors Dj > 0 on Y such that

Lj = Lj(Dj).

From the multiplication Li ⊗ Lj → Li+j we get

Di +Dj 6 Di+j for all i, j > 1,

where D1 := 0.
Thus to any quasi-primitive extension Z ⊃ Y we can associate as invariants a line
bundle L and a sequence of divisors D2, . . . , Dk on Y . We call (L,D2, . . . , Dk) the
type of the quasi-primitive extension.

3.6. Note that the extension Z1 ⊃ Y is obtained by the Ferrand construction
using the line bundle L. The other extensions have a more complicated structure.
To study them consider the conormal sheaves νj := νZj

= Ij/I
2
j . We have νj |Y =

Ij/IY Ij. Since IY Ij ⊂ Ij+1 and Lj+1 = Ij/Ij+1 we have an exact sequence

0 −→
Ij+1

IY Ij
−→

Ij
IY Ij

= νj |Y
βj
−→ Lj+1 −→ 0.

Thus Ij+1 is uniquely determined by Ij and the epimorphism βj : νj |Y → Lj+1.
However this epimorphism is not arbitrary, but satisfies a certain condition. To
derive this condition, we consider the sequence

0 −→ Lj+1 τj
−→ νj |Y −→ νY −→ L −→ 0.
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As in § 2.3 we have Lj+1 = Ij+1
Y /I1I

j
Y , νj |Y = Ij/IY Ij , νY = IY /I

2
Y , L = IY /I1

and the maps are induced by the natural inclusions. The sequence is a complex,
but not necessarily exact at the places νj |Y and νY . The composition

Lj+1 τj
−→ νj |Y

βj
−→ Lj+1 = Lj+1(Dj+1)

is nothing else than the natural inclusion Lj+1 → Lj+1(Dj+1).
Thus βj is a ”meromorphic” retraction of τj . In a sense, this is the only condition
that βj has to fulfill, as the following proposition shows.

3.7. Proposition. Let Z ′ ⊃ Y be a quasi-primitive extension of type (L,D2, . . . , Dk−1)
and multiplicity k and let τ ′ : Lk → νZ′|Y be the natural map induced by the inclu-
sion IkY ⊂ IZ′. Let Dk > 0 be another divisor on Y . Then there exists a natural
bijective correspondence between the set of quasi-primitive extensions Z ⊃ Y of
multiplicity k + 1 and type (L,D2, . . . , Dk) with CM-filtration Y = Z0 ⊂ Z1 ⊂
. . . ⊂ Zk−1 = Z ′ ⊂ Z and the set of all epimorphisms

β : νZ′|Y → Lk(Dk)

which make commutative the diagram

νZ′|Y
β

// Lk(Dk)

Lk

τ ′

OO

nat

::
u

u
u

u
u

u
u

u
u

u

Proof. Of course, given β, the associated extension Z ⊃ Y is defined by the exact
sequence

0 −→
IZ

IY IZ′

−→ νZ′ |Y
β

−→ Lk(Dk) −→ 0

By the above remarks it remains only to show that for this Z the maximal CM
subspace of Z ∩ Y (k−1) coincides with Z ′. This is true over Y r

⋃

Supp(Dj), since
there the extension is primitive. Hence it is true everywhere.

3.8. Parametrization. Assume Y compact. Then, given one β0 satisfying the
conditions of Proposition 3.7, the set of all such β is in bijective correspondence
with an open subset of

Hom(K,Lk(Dk)),

where K := (νZ′ |Y )/ Im(Lk → νZ′|Y ). To determine this set consider the sequence

0 −→ Lk
τ ′
−→ νZ′|Y −→ νY −→ L −→ 0.
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Since this sequence is exact outside a set of dimension zero, K ′ := K/Tors(K) is
isomorphic to

Im(νZ′ |Y → νY ) ⊂ M := Ker(νZ → L) = I1/I
2
Y .

It follows that K ′ = M(−D′

k−1), where D′

k−1 is the divisor determined by

I1

Ik−1 + I2
Y

∼= OD′

k−1
.

Since Hom(K,Lk(Dk)) = Hom(K ′, Lk(Dk)) and M = det(νY ) ⊗ L−1, we see that
the set of all β’s is parametrized by an open subset of

H0(Y, det(νY )∗ ⊗ Lk+1(D′

k−1 +Dk)),

(cf. Corollary 2.5).
Note that D′

1 = 0 and that

ODj
= Coker(Lj → Lj) ∼=

Ij−1

Ij + IjY
,

hence in particular D′

2 = D2.

3.9. Local structure. Proposition 3.7 can also be used to determine the local
structure of quasi-primitive extensions. As an example consider a quasi-primitive
extension Z = Z2 ⊃ Z1 ⊃ Y of multiplicity 3 in the neighborhood of a point
a ∈ Y where orda(D2) = d > 0. Since Z1 ⊃ Y is a Ferrand doubling, there exists a
local coordinate system (t, x, y) around a such that IY = (x, y), I1 = (x, y2) and
t(a) = 0. Then ν1|Y = I1/IY I1 is generated by the classes

.
x := x mod IY I1,

.
y2 := y2 mod IY I1,

and L2 = I2
Y /IY I1 is generated by

.
y2. In the diagram

0 //

I2

IY I1

//

I1

IY I1

β
// L2(D2) // 0

L2

τ

OO

γ

;;
x

x
x

x
x

x
x

x
x

x
x

τ maps
.
y2 to

.
y2 and γ maps

.
y2 to tde, where e is a local base of L2(D2). By the

commutativity of the diagram β(
.
y2) = tde. Since β is surjective, we must have

β(
.
x) = ϕe, where ϕ(0) 6= 0. Replacing x by 1

ϕ
x, we may suppose β(

.
x) = e. Then

Ker(β) is generated by td
.
x−

.
y2, hence

IZ2 = (tdx− y2) + IY I1 = (tdx− y2, xy, x2).

In a similar manner one calculates the local structure of a quasi-primitive extension
Z = Z3 ⊃ Z2 ⊃ Z1 ⊃ Y of multiplicity 4 and type (L,D2, D3) around a. One gets:
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i) If orda(D2) = orda(D3) = d, then Z3 is a l.c.i. in a neighborhood of a and

IZ3 = (tdx− y2, x2).

If globally D2 = D3 =: D, then Z3 is a l.c.i. everywhere and one calculates
for the dualizing sheaf

ωZ3|Y = ωY ⊗ L−3(−D).

ii) If orda(D2) = d < orda(D3) = d + δ, then Z3 is not a l.c.i. and in suitable
coordinates

IZ3 = (tδ(tdx− y2) − xy, y(td − y2), x2).

§ 4. Thick extensions of multiplicity 4

4.1. As always, let Y be a smooth connected curve in a 3-dimensional manifold
X. A CM-extension Z ⊃ Y which is not quasi-primitive contains by § 3.4 the
full first infinitesimal neighborhood Y (1) of Y . Therefore we will call it a thick
extension. In particular, if Z ⊃ Y is a thick CM-extension of multiplicity 4, we
have Y (1) ⊂ Z ⊂ Y (2), i.e.

I3
Y ⊂ IZ ⊂ I2

Y

and L := I2
Y /IZ is locally free of rank 1. Thus we have an exact sequence

0 −→
IZ
I3
Y

−→
I2
Y

I3
Y

−→ L −→ 0.

Conversely, let L be a given line bundle on Y and

λ : I2
Y /I

3
Y = S2 νY −→ L

an epimorphism. Then Ker(λ) can be written in the form IZ/I
3
Y and IZ defines a

CM-extension Z ⊃ Y of multiplicity 4 with Y (1) ⊂ Z.

4.2. We study now the problem under what conditions on λ the structure Z will
be l.c.i. For this purpose we consider more generally a bundle F of rank 2 on Y .
One has the squaring map

q : F −→ S2 F.

Its image is a quadratic cone Q ⊂ S2 F . If e1, e2 is a local base of F and e1, e1e2, e2
the associated base of the second symmetric powers S2 F , then Q consists of all
linear combinations ξ1e

2
1 + ξ2e1e2 + ξ3e

2
2 such that 4ξ1ξ3 − ξ2

2 = 0. Let now

λ : S2 F −→ L
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be an epimorphism of S2 F onto a line bundle L on Y . We define a discriminant
disc(λ) as follows: Let e be a basis of L over some open subset U ⊂ Y and let e1,
e2 be a basis of F over U as above. Then λ defines functions a, b, c on U by

λ(e21) = ae, λ(e1e2) = be, λ(e22) = ce.

With respect to the given bases, disc(λ) is given by ac − b2. The transformation
behavior under base changes of F and L shows then, that disc(λ) is a well defined
element

disc(λ) ∈ Γ(Y, det(F )−2 ⊗ L2).

The discriminant has the following significance: disc(λ) vanishes in a point p ∈ Y
if and only if in the fiber S2 Fp the kernel Ker(λ)p is tangent to the quadratic cone.
Now we apply this to the bundle F = νY .

4.3. Proposition. Let λ : S2 νY −→ L be an epimorphism onto a line bundle L
on Y and let Z ⊃ Y be defined by the exact sequence

0 −→
IZ
I3
Y

−→ S2 νY
λ

−→ L −→ 0.

Then Z is a l.c.i. at a point p ∈ Y iff disc(λ)(p) 6= 0.

Proof. a) If disc(λ)(p) 6= 0, then in the fiber (S2 νY )p the kernel Ker(λ)p inter-
sects the quadratic cone in two different lines. Therefore there exist over some
neighborhood of p two subline bundles M1, M2 ⊂ νY such that Q∩Ker(λ) =
q(M1)∪q(M2). Choose a basis e1, e2 of νY such that ei is a basis of Mi. Then
Ker(λ) is generated by e21 and e22. We can choose local coordinates (t, x, y)
in X around p such that e1 = xmodI2

Y and e2 = ymodI2
Y . Then it is easily

verified that IZ = (x2, y2), so Z is a l.c.i. in a neighborhood of p.

b) If disc(λ)(p) = 0, we have to distinguish two cases:

i) disc(λ) vanishes identically in a neighborhood of p. This implies Q ∩
Ker(λ) = q(M) for some subline bundle M of νY over a neighborhood
of p. Then for some basis e1 ∈ M , e2 of νY , Ker(λ) is generated by e21,
e1e2. For a suitable coordinate system (t, x, y) around p we have then

IZ = (x2, xy) + (x, y)3 = (x2, xy, y3),

which shows that Z is not a l.c.i.

ii) disc(λ)(p) vanishes at p of a certain finite order d > 0. If (a, b, c) are
the coordinates of λ with respect to some basis e1, e2 of νY and e of L
over a neighborhood of p, we have therefore ac − b2 = td, where t is a
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local coordinate on Y with t(p) = 0. Since a, b, c cannot simultaneously
vanish at p, we have a(p) 6= 0 or c(p) 6= 0. We may suppose a(p) 6= 0.
Multiplying e1 by an invertible function, we may even assume a ≡ 1.
We replace now e2 by e′2 = e2 − be1. Then

λ(e1e
′

2) = λ(e1e2) − bλ(e21) = b− b = 0.

Hence we may also assume without loss of generality that b = 0. Then
c = td and Ker(λ) is generated by e1e2, e

2
2 − tde21. For a suitable coor-

dinate system (t, x, y) around p we have then

IZ = (xy, y2 − tdx2) + (x, y)3 = (xy, y2 − tdx2, x3),

which shows again that Z is not a l.c.i.

4.4. Remark. From Proposition 4.3 it follows in particular: If Z is a locally com-
plete intersection everywhere, then the bundle det(νY )−2 ⊗ L2 must be trivial.

As an example let us consider the case X = P3, Y = P1 ⊂ P3. Then νY =
OY (−1) ⊕ OY (−1). Thus for a thick l.c.i. structure Z ⊃ Y of multiplicity 4 we
have L = OY (−2). The epimorphism

S2 νY = OY (−2)3 λ
−→ OY (−2)

is then given by a triple of constants a, b, c with ac− b2 6= 0 and it is easy to see
that there exist (global) homogeneous coordinates (u, v, x, y) on P3 such that

IY = (x, y), IZ = (x2, y2).

Thus Z is a global complete intersection.

4.5. Proposition. Let Z ⊃ Y be a thick l.c.i. extension of multiplicity 4 given by
an epimorphism λ : S2 νY −→ L. Then we have for the dualizing bundle ωZ |Y ∼=
ωY ⊗ L−1.

Proof. There is an epimorphism

νZ |Y = IZ/IY IZ −→ IZ/I
3
Y = Ker(S2 νY → L),

which must be an isomorphism, since both sheaves are locally free OY -modules of
rank 2. Thus we have an exact sequence

0 −→ νZ|Y −→ S2 νY −→ L −→ 0,

from which it follows that det(νZ |Y ) ∼= det(S2 νY ) ⊗ L−1 ∼= det(νY )3 ⊗ L−1. Since
Z is a l.c.i., we have det(νY )2 = L2, hence det(νZ|Y ) ∼= det(νY ) ⊗ L, from which
the assertion follows.
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