Market price of risk specifications for affine models: theory and evidence

Patrick Cheriditoa, Damir Filipovićb, Robert L. Kimmelc

aPrinceton University, Department of Operations Research and Financial Engineering, Princeton, NJ, 08544, USA
bUniversity of Munich, Department of Mathematics, 80333, Munich, Germany
cPrinceton University, Department of Economics, Princeton, NJ, 08544, USA

Received 14 December 2004; received in revised format 15 September 2005; accepted 23 September 2005

Abstract
We extend the standard specification of the market price of risk for affine yield models, and apply it to U.S. Treasury data. Our specification often provides better fit, sometimes with very high statistical significance. The improved fit comes from the time-series rather than cross-sectional features of the yield curve. We derive the conditions under which our specification does not admit arbitrage opportunities. The extension has extremely strong statistical significance for affine yield models with multiple square-root type variables. Although we focus on affine yield models, our specification can be used with other asset pricing models as well.

\textit{JEL Classifications:} C51, G12, G13.
\textit{Keywords:} term structure, market price of risk, affine yield models, no-arbitrage pricing.

We would like to thank Jun Liu, George Chacko, Chris Jones, an anonymous referee, seminar participants at the Canadian Mathematical Society, Princeton University, Northwestern University, the University of Illinois Urbana-Champaign, Duke University, Ohio State University, the Triangle Econometrics Workshop, the Econometric Society, the Centre for Advanced Studies in Finance at the University of Waterloo, the University of California Santa Barbara, the Western Finance Association, the Bachelier Society Third World Congress, and the Chinese Academy of Sciences Centre for Statistical Research for many helpful comments and suggestions. Any remaining errors are solely our responsibility. We would also like to thank Robert Bliss and Greg Duffee for the data set used in this study.

*Corresponding author contact information: rkimmel@princeton.edu

00000/00 $ see front matter © 0000Published by Elsevier Science B.V. All rights reserved