

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

MATHEMATISCHES INSTITUT

Prof. Dr. H.-D. Donder Parmenides García Cornejo, Andreas Fackler Sommersemester 2010 25. Juni 2010

Topologie und Differentialrechnung mehrerer Variablen Tutorium 10

Aufgabe 10.1. Bestimmen Sie das Taylorpolynom zweiten Grades der folgenden Funktionen mit Entwicklungspunkt (0,0):

(a)
$$g: \mathbb{R}^2 \to \mathbb{R}, \ g(x_1, x_2) = e^{x_1 x_2}$$

(b)
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = \cos\left(\sqrt{x_1^2 + x_2^2}\right)$$

Aufgabe 10.2. Bestimmen Sie alle Minima und Maxima der folgenden Funktionen:

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = \cos(x_1) + \cos(x_2)$$

(a)
$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x_1, x_2) = \cos(x_1) + \cos(x_2)$$

(b) $g: \mathbb{R}^2 \to \mathbb{R}, \ g(x_1, x_2) = \sin(x_1^2 + x_2^2) + x_1^2 + x_2^2$

Aufgabe 10.3. Finden Sie jeweils eine Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, so dass:

- (a) $\operatorname{Hess} f(0)$ nicht positiv definit ist, aber f in 0 ein striktes Minimum hat.
- (b) Hess f(0) nicht indefinit ist, aber f in 0 kein Extremum hat.

Aufgabe 10.4. Sei C die Menge der k-mal stetig differenzierbaren Funktionen von \mathbb{R}^n nach \mathbb{R} , deren m-te partielle Ableitungen für alle $m \leq k$ beschränkt sind. Sei nun

$$||f||_k = \sum_{\substack{m \le k \\ 1 \le i_1, \dots, i_m \le n}} ||D_{i_1} \dots D_{i_m} f||,$$

wobei $\|\|$ die Supremums-Norm ist. Zeigen Sie, dass C mit $\|\|_k$ ein vollständiger normierter Vektorraum ist.